#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Multiple Candidate Effectors from the Oomycete Pathogen Suppress Host Plant Immunity


Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (∼70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.


Vyšlo v časopise: Multiple Candidate Effectors from the Oomycete Pathogen Suppress Host Plant Immunity. PLoS Pathog 7(11): e32767. doi:10.1371/journal.ppat.1002348
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002348

Souhrn

Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (∼70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation.


Zdroje

1. OliverRIpchoS 2004 Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens. Mol Plant Pathol 5 347 352

2. JonesJDDanglJL 2006 The plant immune system. Nature 444 323 329

3. ZipfelC 2009 Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12 414 420

4. BollerTHeSY 2009 Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324 742 744

5. van der HoornRAKamounS 2008 From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20 2009 2017

6. RaffaeleSFarrerRACanoLMStudholmeDJMacLeanD 2010 Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330 1540 1543

7. HajriABrinCHunaultGLardeuxFLemaireC 2009 A “repertoire for repertoire” hypothesis: repertoires of type three effectors are candidate determinants of host specificity in Xanthomonas. PLoS One 4 e6632

8. LipkaUFuchsRLipkaV 2008 Arabidopsis non-host resistance to powdery mildews. Curr Opin Plant Biol 11 404 411

9. BaxterLTripathySIshaqueNBootNCabralA 2010 Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330 1549 1551

10. SpanuPDAbbottJCAmselemJBurgisTASoanesDM 2010 Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330 1543 1546

11. SchirawskiJMannhauptGMunchKBrefortTSchipperK 2010 Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330 1546 1548

12. OlivaRWinJRaffaeleSBoutemyLBozkurtTO 2010 Recent developments in effector biology of filamentous plant pathogens. Cell Microbiol 12 1015

13. SlusarenkoAJSchlaichNL 2003 Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol Plant Pathol 4 159 170

14. HolubEB 2008 Natural history of Arabidopsis thaliana and oomycete symbioses. Eur J Plant Pathol 122 91 109

15. CoatesMEBeynonJL 2010 Hyaloperonospora arabidopsidis as a pathogen model. Annu Rev Phytopathol 48 329 345

16. TortoTALiSSStyerAHuitemaETestaA 2003 EST Mining and Functional Expression Assays Identify Extracellular Effector Proteins From the Plant Pathogen Phytophthora. Genome Res 13 1675 1685

17. KamounS 2006 A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev of Phytopathol 44 41 60

18. BirchPRJRehmanyAPPritchardLKamounSBeynonJL 2006 Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14 8 11

19. QutobDKemmerlingBBrunnerFKüfnerIEngelhardtS 2006 Phytotoxicity and Innate Immune Responses Induced by Nep1-Like Proteins. Plant Cell 12 3721 3744

20. KemenEKemenACRafiqiMHempelUMendgenK 2005 Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe In 18 1130 1139

21. CatanzaritiAMDoddsPNLawrenceGJAyliffeMAEllisJG 2006 Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18 243 256

22. GoutLFudalIKuhnMLBlaiseFEckertM 2006 Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Mol Microbiol 60 67 80

23. RidoutCJSkamniotiPPorrittOSacristanSJonesJD 2006 Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18 2402 2414

24. ShanWCaoMLeungDTylerBM 2004 The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant Microbe In 17 394 403

25. ArmstrongMRWhissonSCPritchardLBosJIVenterE 2005 An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci U S A 102 7766 7771

26. AllenRLBittner-EddyPDGrenvitte-BriggsLJMeitzJCRehmanyAP 2004 Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306 1957 1960

27. RehmanyAPGordonARoseLEAllenRLArmstrongMR 2005 Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines. Plant Cell 17 1839 1850

28. WinJMorganWBosJKrasilevaKVCanoLM 2007 Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19 2349 2369

29. WhissonSCBoevinkPCMolelekiLAvrovaAOMoralesJG 2007 A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450 115

30. DouDKaleSDWangXJiangRHBruceNA 2008 RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20 1930 1947

31. KaleSDGuBCapellutoDGDouDFeldmanE 2010 External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142 284 295

32. SchornackSvan DammeMBozkurtTOCanoLMSmokerM 2010 Ancient class of translocated oomycete effectors targets the host nucleus. Proc Natl Acad Sci U S A 107 17421 17426

33. BirchPRBoevinkPCGilroyEMHeinIPritchardL 2008 Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11 373 379

34. PanstrugaRDoddsPN 2009 Terrific protein traffic: the mystery of effector protein delivery by filamentous plant pathogens. Science 324 748 750

35. JudelsonHSTylerBMMichelmoreRW 1991 Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe In 4 602 607

36. HuitemaESmokerMKamounS 2010 A straightforward protocol for electro-transformation of Phytophthora capsici zoospores. Methods Mol Biol 712 129 135

37. SohnKHLeiRNemriAJonesJDG 2007 The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19 4077 4090

38. GuoMTianFWamboldtYAlfanoJR 2009 The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol Plant Microbe In 22 1069 1080

39. CornelisGR 2010 The type III secretion injectisome, a complex nanomachine for intracellular toxin delivery. Biol Chem 391 745 751

40. MudgettMBChesnokovaODahlbeckDClarkETRossierO 2000 Molecular signals required for type III secretion and translocation of the Xanthomonas campestris AvrBs2 protein to pepper plants. Proc Natl Acad Sci USA 97 13324 13329

41. FanJCrooksCLambC 2008 High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Plant J 53 393 399

42. ZipfelCRobatzekSNavarroLOakeleyEJJonesJD 2004 Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428 764 767

43. Gimenez-IbanezSNtoukakisVRathjenJP 2009 The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signal Behav 4 539 541

44. NekrasovVLiJBatouxMRouxMChuZH 2009 Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. Embo J 28 3428 3438

45. LiJZhao-HuiCBatouxMNekrasovVRouxM 2009 Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc Natl Acad Sci U S A 106 15973 15978

46. SalmeronJMStaskawiczBJ 1993 Molecular characterization and h r p dependence of the avirulence gene avrPro from Pseudomonas syringae pv. tomato. Mol Gen Genet 239 6 16

47. BelkhadirYNimchukZHubertDAMackeyDDanglJL 2004 Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16 2822 2835

48. AxtellMJStaskawiczBJ 2003 Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112 369 377

49. GassmannWHinschMEStaskawiczBJ 1999 The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20 265 277

50. RentelMCLeonelliLDahlbeckDZhaoBStaskawiczBJ 2008 Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci USA 105 1091 1096

51. LindebergMStavrinidesJChangJHAlfanoJRCollmerA 2005 Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol Plant Microbe In18 275 282

52. LinNCMartinGB 2005 An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Mol Plant Microbe In 18 43 51

53. NordborgMHuTTIshinoYJhaveriJToomajianC 2005 The Pattern of Polymorphism in Arabidopsis thaliana. PLoS Biology 3 1289 1299

54. GoodmanRNNovackyAJ 1994 The Hypersensitive Response in Plants to Pathogens: A Resistance Phenomenon St. Paul APS Press

55. GreenbergJTYaoN 2004 The role and regulation of programmed cell death in plant-pathogen interactions. Cell Microbiol 6 201 211

56. YuICParkerJBentAF 1998 Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95 7819 7824

57. ThomasWJThireaultCAKimbrelJAChangJH 2009 Recombineering and stable integration of the Pseudomonas syringae pv. syringae 61 hrp/hrc cluster into the genome of the soil bacterium Pseudomonas fluorescens Pf0-1. Plant J 60 919 928

58. DonofrioNMDelaneyTP 2001 Abnormal callose response phenotype and hypersusceptibility to Peronospoara parasitica in defence-compromised arabidopsis nim1-1 and salicylate hydroxylase-expressing plants. Mol Plant Microbe In 14 439 450

59. DongXHongZChatterjeeJKimSVermaDP 2008 Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection. Planta 229 87 98

60. MeyerDPajonkSMicaliCO'ConnellRSchulze-LefertP 2009 Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57 986 999

61. RobatzekSChinchillaDBollerT 2006 Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20 537 542

62. NaitoKTaguchiFSuzukiTInagakiYToyodaK 2008 Amino Acid sequence of bacterial microbe-associated molecular pattern flg22 is required for virulence. Mol Plant Microbe In 9 1165 1174

63. MishinaTZeierJ 2007 Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic aquired resistance in Arabidopsis. Plant J 50 500 513

64. Gomez-GomezLBollerT 2002 Flagellin perception: a paradigm for innate immunity. Trends Plant Sci 7 251 256

65. Gomez-GomezLFelixGBollerT 1999 A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18 277 284

66. HauckPThilmonyRHeSY 2003 A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc Natl Acad Sci U S A 100 8577 8582

67. NomuraKDebroySLeeYHPumplinNJonesJ 2006 A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313 220 223

68. ZhangJShaoFLiYCuiHChenL 2007 A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity in Plants. Cell Host Microbe 1 175 185

69. UnderwoodWZhangSHeSY 2007 The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana. Plant J 52 658 672

70. DebRoySThilmonyRKwackYBNomuraKHeSY 2004 A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101 9927 9932

71. TorMHolubEBBroseEMuskerRGunnN 1994 Map positions of three loci in Arabidopsis thaliana associated with isolate-specific recognition of Peronospora parasitica. (downy mildew). Mol Plant Microbe In 7 214 222

72. RohmerL 2003 Nucleothide sequence, functional characterization and evolution of pFKN, a virulence plasmid in Pseudomonas syringae pathovar maculicola. Mol Microbiol 47 1545 1562

73. TylerBMTripathySZhangXDehalPJiangRH 2006 Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313 1261 1266

74. JiangRHTripathySGoversFTylerBM 2008 RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 105 4874 4879

75. HaasBJKamounSZodyMCJiangRHYHandsakerRE 2009 Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461 393 398

76. FuZQGuoMJeongBRTianFElthonTE 2007 A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447 284 281

77. de TorresMMansfieldJWGrabovNBrownIRAmmounehH 2006 Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47 368 382

78. WiltonMSubramaniamRElmoreJFelsensteinerCCoakerG 2010 The type III effector HopF2(Pto) targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci USA 107 2349 2354

79. NemriAAtwellSTaroneAMHuangYSZhaoK 2010 Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping. Proc Natl Acad Sci USA 107 10302 10307

80. GaulinEDraméNLafitteCTorto-AlaliboTMartinezY 2006 Cellulose Binding Domains of a Phytophthora Cell Wall Protein Are Novel Pathogen-Associated Molecular Patterns. Plant Cell 18 1766 1777

81. TorM 2008 Pattern-recognition receptors [PRRs] in plants. Jo Leukocyte Biol 84 A1 A2

82. KvitkoBHParkDHVelasquezACWeiCFRussellAB 2009 Deletions in the Repertoire of Pseudomonas syringae pv. tomato DC3000 Type III Secretion Effector Genes Reveal Functional Overlap among Effectors. PLoS Pathog 5 e1000388 doi:10.1371/journal.ppat.1000388

83. BlockALiGYFuZQAlfanoJR 2008 Phytopathogen type III effector weaponry and their plant targets. Curr Op Plant Biol 11 396 403

84. CunnacSLindebergMCollmerA 2009 Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Op Microbiol 12 53 60

85. HannDRRathjenJP 2010 The long and winding road: virulence effector proteins of plant pathogenic bacteria. Cell Mol Life Sci 67 3425 3434

86. DouDKaleSDWangXChenYWangQ 2008 Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. Plant Cell 20 1118 1133

87. OhSKYoungCLeeMOlivaRBozkurtTO 2009 In Planta Expression Screens of Phytophthora infestans RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the Solanum bulbocastanum Disease Resistance Protein Rpi-blb2. Plant Cell 21 2928 2947

88. BaileyKCevikVHoltonNByrne-RichardsonJSohnK 2011 Molecular Cloning of ATR5Emoy2 from Hyaloperonospora arabidopsidis, an avirulence determinant that triggers RPP5-mediated defense in Arabidopsis. Mol Plant Microbe In 24 827 838

89. EmanuelssonOBrunakSvon HeijneGNielsenH 2007 Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2 953 971

90. BadelJLNomuraKBandyopadhyaySShimizuRCollmerA 2003 Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol Microbiol 49 1239 1251

91. LinNCMartinGB 2005 An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Mol Plant Microbe In 18 43 51

92. KarimiMInzeDDepickerA 2002 GATEWAY((TM)) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7 193 195

93. KonczCSchellJ 1986 The promoter of the TL -DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204 383 396

94. KatagiriFThilmonyRHeSY 2002 The Arabidopsis Thaliana-Pseudomonas Syringae Interaction. Arabidopsis Book 1 1 35

95. KepplerLDBakerCJAtkinsonMM 1989 Active oxygen production during a bacteria-induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79 974 978

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#