#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in


Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.


Vyšlo v časopise: Transit through the Flea Vector Induces a Pretransmission Innate Immunity Resistance Phenotype in. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000783
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000783

Souhrn

Yersinia pestis, the agent of plague, is transmitted to mammals by infected fleas. Y. pestis exhibits a distinct life stage in the flea, where it grows in the form of a cohesive biofilm that promotes transmission. After transmission, the temperature shift to 37°C induces many known virulence factors of Y. pestis that confer resistance to innate immunity. These factors are not produced in the low-temperature environment of the flea, however, suggesting that Y. pestis is vulnerable to the initial encounter with innate immune cells at the flea bite site. In this study, we used whole-genome microarrays to compare the Y. pestis in vivo transcriptome in infective fleas to in vitro transcriptomes in temperature-matched biofilm and planktonic cultures, and to the previously characterized in vivo gene expression profile in the rat bubo. In addition to genes involved in metabolic adaptation to the flea gut and biofilm formation, several genes with known or predicted roles in resistance to innate immunity and pathogenicity in the mammal were upregulated in the flea. Y. pestis from infected fleas were more resistant to phagocytosis by macrophages than in vitro-grown bacteria, in part attributable to a cluster of insecticidal-like toxin genes that were highly expressed only in the flea. Our results suggest that transit through the flea vector induces a phenotype that enhances survival and dissemination of Y. pestis after transmission to the mammalian host.


Zdroje

1. PerryRD

FetherstonJD

1997 Yersinia pestis– etiologic agent of plague. Clin Microbiol Rev 10 35 66

2. HinnebuschBJ

RudolphAE

CherepanovP

DixonJE

SchwanTG

2002 Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296 733 735

3. HinnebuschBJ

PerryRD

SchwanTG

1996 Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273 367 370

4. DarbyC

AnanthSL

TanL

HinnebuschBJ

2005 Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 73 7236 7242

5. BacotAW

MartinCJ

1914 Observations on the mechanism on the transmission of plague by fleas. J Hyg Plague Suppl 313 423 439

6. DarbyC

HsuJW

GhoriN

FalkowS

2002 Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417 243 244

7. JarrettCO

DeakE

IsherwoodKE

OystonPC

FischerER

2004 Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190 783 792

8. KirillinaO

FetherstonJD

BobrovAG

AbneyJ

PerryRD

2004 HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54 75 88

9. BobrovAG

KirillinaO

PerryRD

2005 The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247 123 130

10. BeloinC

Da ReS

GhigoJ-M

2005 Colonization of abiotic surfaces.

BöckA

CurtisRIII

KaperJB

NeidhardtFC

NyströmK

EcoSal—Escherichia coli and Salmonella: cellular and molecular biology Washington, D.C. ASM Press

11. SebbaneF

LemaitreN

SturdevantDE

RebeilR

VirtanevaK

2006 Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci U S A 103 11766 11771

12. TerraWR

FerreiraC

JordaoBP

DillonRJ

1996 Digestive enzymes.

LehaneMJ

BillingsleyPF

Biology of the insect midgut London Chapman & Hall 153 194

13. OgaharaT

OhnoM

TakayamaM

IgarashiK

KobayashiH

1995 Accumulation of glutamate by osmotically stressed Escherichia coli is dependent on pH. J Bacteriol 177 5987 5990

14. ChapmanRF

1998 The insects. Structure and function Cambridge, UK Cambridge University Press

15. BoudkoDY

KohnAB

MeleshkevitchEA

DasherMK

SeronTJ

2005 Ancestry and progeny of nutrient amino acid transporters. Proc Natl Acad Sci U S A 102 1360 1365

16. KeyhaniNO

RosemanS

1997 Wild-type Escherichia coli grows on the chitin disaccharide, N,N′-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci U S A 94 14367 14371

17. ReizerJ

ReizerA

SaierMHJr

1995 Novel phosphotransferase system genes revealed by bacterial genome analysis-a gene cluster encoding a unique Enzyme I and the proteins of a fructose-like permease system. Microbiology 141 961 971

18. WolfeAJ

2005 The acetate switch. Microbiol Mol Biol Rev 69 12 50

19. MortlockRP

BrubakerRR

1962 Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities of Pasteurella pestis and Pasteurella pseudotuberculosis. J Bacteriol 84 1122 1123

20. WhiteleyM

BageraMG

BumgarnerRE

ParsekMR

TeitzelGM

2001 Gene expression in Pseudomonas aeruginosa biofilms. Nature 413 860 864

21. WaiteRD

PaccanaroA

PapakonstantinopoulouA

HurstJM

SaqiM

2006 Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7 162

22. SchembriMA

KjaergaardK

KlemmP

2003 Global gene expression in Escherichia coli biofilms. Mol Microbiol 48 253 267

23. BeloinC

ValleJ

Latour-LambertP

FaureP

KzreminskiM

2004 Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51 659 674

24. LazazzeraBA

2005 Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol 8 222 227

25. StewartPS

FranklinMJ

2008 Physiological heterogeneity in biofilms. Nat Rev Microbiol 6 199 210

26. PerryRD

BobrovAG

KirillinaO

JonesHA

PedersenL

2004 Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186 1638 1647

27. TorresAG

JeterC

LangleyW

MatthysseAG

2005 Differential binding of Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Appl Environ Microbiol 71 8008 8015

28. ValletI

OlsonJW

LoryS

LazdunskiA

FillouxA

2001 The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98 6911 6916

29. SherlockO

VejborgRM

KlemmP

2005 The TibA adhesin/invasin from enterotoxigenic Escherichia coli is self recognizing and induces bacterial aggregation and biofilm formation. Infect Immun 73 1954 1963

30. PatelCN

WorthamBW

LinesJL

FetherstonJD

PerryRD

2006 Polyamines are essential for the formation of plague biofilm. J Bacteriol 188 2355 2363

31. VadyvalooV

JarrettC

SturdevantD

SebbaneF

HinnebuschBJ

2007 Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol 603 192 200

32. RebeilR

ErnstRK

JarrettCO

AdamsKN

MillerSI

2006 Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid A variation. J Bacteriol 188 1381 1388

33. SebbaneF

JarrettCO

GardnerD

LongD

HinnebuschBJ

2006 Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 103 5526 5530

34. FormanS

WulffCR

Myers-MoralesT

CowanC

PerryRD

2008 yadBC of Yersinia pestis, a new virulence determinant for bubonic plague. Infect Immun 76 578 587

35. HuangX

LindlerLE

2004 The pH 6 antigen is an antiphagocytic factor produced by Yersinia pestis independent of Yersinia outer proteins and capsule antigen. Infect Immun 72 7212 7219

36. CathelynJS

CrosbySD

LathemWW

GoldmanWE

MillerVL

2006 RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103 13514 13519

37. HerovenAK

DerschP

2006 RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 62 1469 1483

38. OystonPC

DorrellN

WilliamsK

LiSR

GreenM

2000 The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68 3419 3425

39. GrabensteinJP

FukutoHS

PalmerLE

BliskaJB

2006 Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun 74 3727 3741

40. Blanc-PotardAB

GroismanEA

1997 The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. Embo J 16 5376 5385

41. GroismanEA

KayserJ

SonciniFC

1997 Regulation of polymixin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179 7040 7045

42. BaderMW

SanowarS

DaleyME

SchneiderAR

ChoU

2005 Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122 461 472

43. ProstLR

MillerSI

2008 The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol 10 576 582

44. DimopoulusG

RichmanA

MüllerH-M

KafatosFC

1997 Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94 11508 11513

45. LehaneMJ

WuD

LehaneSM

1997 Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. Proc Natl Acad Sci U S A 94 11502 11507

46. ZhouD

HanY

QinL

ChenZ

QiuJ

2005 Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis. FEMS Microbiol Lett 250 85 95

47. PerezJC

GroismanEA

2009 Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proc Natl Acad Sci U S A 106 4319 4324

48. MiyashiroT

GoulianM

2007 Stimulus-dependent differential regulation in the Escherichia coli PhoQ-PhoP system. Proc Natl Acad Sci U S A 104 16305 16310

49. EricksonDL

WaterfieldNR

VadyvalooV

LongD

FischerER

2007 Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Cell Microbiol 9 2658 2666

50. GendlinaI

HeldKG

BartraSS

GallisBM

DoneanuCE

2007 Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Mol Microbiol 64 1214 1227

51. HaresMC

HinchliffeSJ

StrongPC

EleftherianosI

DowlingAJ

2008 The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiology 154 3503 3517

52. LorangeEA

RaceBL

SebbaneF

HinnebuschBJ

2005 Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Infect Dis 191 1907 1912

53. BurrowsTW

BaconGA

1956 The basis of virulence in Pasteurella pestis: the development of resistance to phagocytosis in vitro. Br J Exp Pathol 37 286 299

54. CavanaughDC

RandallR

1959 The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of flea-borne plague. J Immunol 83 348 363

55. EricksonDL

JarrettCO

CallisonJA

FischerER

HinnebuschBJ

2008 Loss of a biofilm-inhibiting glycosyl hydrolase during the emergence of Yersinia pestis. J Bacteriol 190 8163 8170

56. VuongC

VoyichJM

FischerER

BraughtonKR

WhitneyAR

2004 Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6 269 275

57. GalvánEM

LasaroMAS

SchifferliDM

2008 Capsular antigen Fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun 76 1456 1464

58. SebbaneF

JarrettC

GardnerD

LongD

HinnebuschBJ

2009 The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun 77 1222 1229

59. BosioCM

ElkinsKL

2001 Susceptibility to secondary Francisella tularensis live vaccine strain infection in B-cell-deficient mice is associated with neutrophilia but not with defects in specific T-cell-mediated immunity. Infect Immun 69 194 203

60. CelliJ

2008 Intracellular localization of Brucella abortus and Francisella tularensis in primary murine macrophages. Methods Mol Biol 431 133 145

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#