#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Fis Is Essential for Capsule Production in and Regulates Expression of Other Important Virulence Factors


P.
multocida
is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors.


Vyšlo v časopise: Fis Is Essential for Capsule Production in and Regulates Expression of Other Important Virulence Factors. PLoS Pathog 6(2): e32767. doi:10.1371/journal.ppat.1000750
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1000750

Souhrn

P.
multocida
is the causative agent of a wide range of diseases of animals, including fowl cholera in poultry and wild birds. Fowl cholera isolates of P. multocida generally express a capsular polysaccharide composed of hyaluronic acid. There have been reports of spontaneous capsule loss in P. multocida, but the mechanism by which this occurs has not been determined. In this study, we identified three independent strains that had spontaneously lost the ability to produce capsular polysaccharide. Quantitative RT-PCR showed that these strains had significantly reduced transcription of the capsule biosynthetic genes, but DNA sequence analysis identified no mutations within the capsule biosynthetic locus. However, whole-genome sequencing of paired capsulated and acapsular strains identified a single point mutation within the fis gene in the acapsular strain. Sequencing of fis from two independently derived spontaneous acapsular strains showed that each contained a mutation within fis. Complementation of these strains with an intact copy of fis, predicted to encode a transcriptional regulator, returned capsule expression to all strains. Therefore, expression of a functional Fis protein is essential for capsule expression in P. multocida. DNA microarray analysis of one of the spontaneous fis mutants identified approximately 30 genes as down-regulated in the mutant, including pfhB_2, which encodes a filamentous hemagglutinin, a known P. multocida virulence factor, and plpE, which encodes the cross protective surface antigen PlpE. Therefore these experiments define for the first time a mechanism for spontaneous capsule loss in P. multocida and identify Fis as a critical regulator of capsule expression. Furthermore, Fis is involved in the regulation of a range of other P. multocida genes including important virulence factors.


Zdroje

1. CarterGR

ChengappaMM

Recommendations for a standard system of designating serotypes of Pasteurella multocida; 1981. 37 42 American Association of Veterinary Laboratory Diagnosticians

2. CifonelliJA

RebersPA

HeddlestonKL

1970 The isolation and characterisation of hyaluronic acid from Pasteurella multocida. Carbohydr Res 14 272 276

3. DeAngelisPL

GunayNS

ToidaT

MaoWJ

LinhardtRJ

2002 Identification of the capsular polysaccharides of Type D and F Pasteurella multocida as unmodified heparin and chondroitin, respectively. Carbohydr Res 337 1547 1552

4. MuniandyN

EdgarJ

WoolcockJB

MukkurTKS

Virulence, purification, structure, and protective potential of the putative capsular polysaccharide of Pasteurella multocida type 6:B.

PattenBE

SpencerTL

JohnsonRB, DH

LehaneL

Pasteurellosis in production animals; 1992 Bali, Indonesia 47 53

5. BoyceJD

ChungJY

AdlerB

2000 Genetic organisation of the capsule biosynthetic locus of Pasteurella multocida M1404 (B:2). Vet Microbiol 72 121 134

6. ChungJY

ZhangYM

AdlerB

1998 The capsule biosynthetic locus of Pasteurella multocida A-1. FEMS Microbiol Lett 166 289 296

7. TownsendKM

BoyceJD

ChungJY

FrostAJ

AdlerB

2001 Genetic organization of Pasteurella multocida cap loci and development of a multiplex capsular PCR typing system. J Clin Microbiol 39 924 929

8. ChungJY

WilkieI

BoyceJD

TownsendKM

FrostAJ

2001 Role of capsule in the pathogenesis of fowl cholera caused by Pasteurella multocida serogroup A. Infect Immun 69 2487 2492

9. BoyceJD

AdlerB

2000 The capsule is a virulence determinant in the pathogenesis of Pasteurella multocida M1404 (B:2). Infect Immun 68 3463 3468

10. HeddlestonKL

WatkoLP

RebersPA

1964 Dissociation of a fowl cholera strain of Pasteurella multocida. Avian Dis 8 649 657

11. ChamplinFR

PattersonCE

AustinFW

RyalsPE

1999 Derivation of extracellular polysaccharide-deficient variants from a serotype A strain of Pasteurella multocida. Curr Microbiol 38 268 272

12. WattJM

SwiatloE

WadeMM

ChamplinFR

2003 Regulation of capsule biosynthesis in serotype A strains of Pasteurella multocida. FEMS Microbiol Lett 225 9 14

13. GraingerDC

BusbySJ

2008 Global regulators of transcription in Escherichia coli: mechanisms of action and methods for study. Adv Appl Microbiol 65 93 113

14. BallCA

OsunaR

FergusonKC

JohnsonRC

1992 Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174 8043 8056

15. BradleyMD

BeachMB

de KoningAP

PrattTS

OsunaR

2007 Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiol 153 2922 2940

16. NinnemannO

KochC

KahmannR

1992 The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J 11 1075 1083

17. PanCQ

FinkelSE

CramtonSE

FengJA

SigmanDS

1996 Variable structures of Fis-DNA complexes determined by flanking DNA-protein contacts. J Mol Biol 264 675 695

18. ShaoY

Feldman-CohenLS

OsunaR

2008 Biochemical identification of base and phosphate contacts between Fis and a high-affinity DNA binding site. J Mol Biol 380 327 339

19. LenzDH

BasslerBL

2007 The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol Microbiol 63 859 871

20. LautierT

NasserW

2007 The DNA nucleoid-associated protein Fis co-ordinates the expression of the main virulence genes in the phytopathogenic bacterium Erwinia chrysanthemi. Mol Microbiol 66 1474 1490

21. SaldanaZ

Xicohtencati-CortesJ

AvelinoF

PhillipsAD

KaperJB

2009 Synergistic role of curli and cellullose in cell adherance and biofilm formation and attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Micro 11 992 1006

22. GoldbergMD

JohnsonM

HintonJC

WilliamsPH

2001 Role of the nucleoid-associated protein Fis in the regulation of virulence properties of enteropathogenic Escherichia coli. Mol Microbiol 41 549 559

23. KellyA

GoldbergMD

CarrollRK

DaninoV

HintonJCD

2004 A global role for Fis in the transcriptional control of metabolism in Salmonella enterica serovar Typhimurium. Microbiol 150 2037 2053

24. HuntML

BoucherDJ

BoyceJD

AdlerB

2001 In vivo-expressed genes of Pasteurella multocida. Infect Immun 69 3004 3012

25. MayBJ

ZhangQ

LiLL

PaustianML

WhittamTS

2001 Complete genomic sequence of Pasteurella multocida, Pm70. Proc Natl Acad Sci USA 98 3460 3465

26. BishopAC

XuJ

JohnsonRC

SchimmelP

de Crecy-LagardV

2002 Identification of the tRNA-dihydrouridine synthase family. J Biol Chem 277 25090 25095

27. ChoBK

KnightEM

BarrettCL

PalssonBO

2008 Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18 900 910

28. WuJR

ShienJH

ShiehHK

ChenCF

ChangPC

2007 Protective immunity conferred by recombinant Pasteurella multocida lipoprotein E (PlpE). Vaccine 25 4140 4148

29. JacquesM

BelangerM

DiarraMS

DargisM

MalouinF

1994 Modulation of Pasteurella multocida capsular polysaccharide during growth under iron-restricted conditions and in vivo. Microbiol 140 263 270

30. MelnikowE

SchoenfeldC

SpehrV

WarrassR

GunkelN

2007 A compendium of antibiotic-induced transcription profiles reveals broad regulation of Pasteurella multocida virulence genes. Vet Microbiol 131 277 292

31. PaustianML

MayBJ

CaoD

BoleyD

KapurV

2002 Transcriptional response of Pasteurella multocida to defined iron sources. J Bacteriol 184 6714 6720

32. PaustianML

MayBJ

KapurV

2001 Pasteurella multocida gene expression in response to iron limitation. Infect Immun 69 4109 4115

33. JohnsonRC

BruistMF

SimonMI

1986 Host protein requirements for in vitro site-specific DNA inversion. Cell 46 531 539

34. KahmannR

RudtF

KochC

MertensG

1985 G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41 771 780

35. BeachMB

OsunaR

1998 Identification and characterization of the fis operon in enteric bacteria. J Bacteriol 180 5932 5946

36. SafoMK

YangW-Z

CorselliL

CramptonSE

YuanHS

1997 The transactivation region of the Fis protein that controls site-specific DNA inversion contrains extended mobile β-hairpin arms. EMBO J 16 6860 6873

37. KochC

NinnemannO

FussH

KahmannR

1991 The N-terminal part of the E.coli DNA binding protein FIS is essential for stimulating site-specific DNA inversion but is not required for specific DNA binding. Nucleic Acids Res 19 5915 5922

38. OsunaR

FinkelSE

JohnsonRC

1991 Identification of two functional regions in Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not lambda excision. EMBO J 10 1593 1603

39. YuanHS

FinkelSE

FengJA

Kaczor-GrzeskowiakM

JohnsonRC

1991 The molecular structure of wild-type and mutant Fis protein: Relationship between mutational changes and recombinational enhancer function. Proc Natl Acad Sci U S A 88 9558 9562

40. TzouW-S

HwangM-J

1997 A model for Fis N-Terminus and Fis invertase recognition. FEBS Lett 401 1 5

41. TraversA

SchneiderR

MuskhelishviliG

2001 DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie 83 213 217

42. MallikP

PrattTS

BeachMB

BradleyMD

UndamatlaJ

2004 Growth phase-dependent regulation and stringent control of fis are conserved processes in enteric bacteria and involve a single promoter (fis P) in Escherichia coli. J Bacteriol 186 122 135

43. KraissA

SchlorS

ReidlJ

1998 In vivo transposon mutagenesis in Haemophilus influenzae. Appl Environ Microbiol 64 4697 4702

44. TatumFM

TabatabaiLB

BriggsRE

2009 Protection against fowl cholera conferred by vaccination with recombinant Pasteurella multocida filamentous hemagglutinin peptides. Avian Dis 53 169 174

45. ClockSA

PlanetPJ

PerezBA

FigurskiDH

2008 Outer membrane components of the Tad (Tight Adherence) secretion of Aggregatibacter actinomycetemcomitans. J Bacteriol 190 980 990

46. BoyceJD

CullenPA

NguyenV

WilkieI

AdlerB

2006 Analysis of the Pasteurella multocida outer membrane sub-proteome and its response to the in vivo environment of the natural host. Proteomics 6 870 880

47. TabatabaiLB

ZehrES

2004 Identification of five outer membrane-associated proteins among cross-protective factor proteins of Pasteurella multocida. Infect Immun 72 1195 1198

48. BoschM

GarridoE

LlagosteraM

de RozasAMP

BadiolaI

2002 Pasteurella multocida exbB, exbD and tonB genes are physically linked but independently transcribed. FEMS Microbiol Lett 210 201 208

49. TatumFM

YersinAG

BriggsRE

2005 Construction and virulence of a Pasteurella multocida fhaB2 mutant in turkeys. Microb Pathog 39 9 17

50. FullerTE

KennedyMJ

LoweryDE

2000 Identification of Pasteurella multocida virulence genes in a septicemic mouse model using signature-tagged mutagenesis. Microb Pathog 29 25 38

51. Jacob-DubuissonF

El-HamelC

SaintN

GuedinS

WilleryE

1999 Channel formation by FhaC, the outer membrane protein involved in the secretion of the Bordetella pertussis filamentous hemagglutinin. J Biol Chem 274 37731 37735

52. Labandeira-ReyM

MockJR

HansenEJ

2009 Regulation of expression of the Haemophilus ducreyi LspB and LspA2 proteins by CpxR. Infect Immun 77 3402 3411

53. ScarlatoV

AricoB

PrugnolaA

RappuoliR

1991 Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 10 3971 3975

54. RyalsPE

NsoforMN

WattJM

ChamplinFR

1998 Relationship between serotype A encapsulation and a 40-kDa lipoprotein in Pasteurella multocida. Curr Microbiol 36 274 277

55. ChamplinFR

ShryockTR

PattersonCE

AustinFW

RyalsPE

2002 Prevalence of a novel capsule-associated lipoprotein among Pasteurellaceae pathogenic in animals. Curr Microbiol 44 297 301

56. BorrathybayE

SawadaT

KataokaY

OkiyamaE

KawamotoE

2003 Capsule thickness and amounts of a 39 kDa capsular protein of avian Pasteurella multocida type A strains correlate with their pathogenicity for chickens. Vet Microbiol 97 215 227

57. HarperM

BoyceJD

CoxAD

St MichaelF

WilkieIW

2007 Pasteurella multocida expresses two lipopolysaccharide glycoforms simultaneously, but only a single form is required for virulence: identification of two acceptor-specific heptosyl I transferases. Infect Immun 75 3885 3893

58. GentryJM

CorstvetRE

PancieraRJ

1982 Extraction of capsular material from Pasteurella haemolytica. Am J Vet Res 43 2070 2073

59. LloydAL

MarshallBJ

MeeBJ

2004 Identifying cloned Helicobacter pylori promoters by primer extension using a FAM-labelled primer and GeneScan® analysis. J Microb Methods 60 291 298

60. RumbleSM

LacrouteP

DalcaAV

FiumeM

SidowA

2009 SHRiMP: accurate mapping of short colour-space reads. PLoS Comput Biol 5 e1000386 doi:10.1371/journal.pcbi.1000386

61. ZerbinoDR

BirneyE

2008 Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 821 829

62. HarperM

CoxA

St MichaelF

ParnasH

WilkieI

2007 Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence. J Bacteriol 189 7384 7391

63. SmythGK

2004 Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 Article 3

64. RitchieME

SilverJ

OshlackA

HolmesM

DiyagamaD

2007 A comparison of background correction methods for two-colour microarrays. Bioinformatics 23 2700 2707

65. BolstadBM

IrizarryRA

AstrandM

SpeedTP

2003 A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19 185 193

66. BenjaminiY

HochbergY

1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57 289 300

67. LaemmliUK

1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680 685

68. AusubelFM

BrentR

KingstonRE

MooreDD

SeidmanJG

SmithJA

StruhlK

1995 Current protocols in molecular biology New York John Wiley & Sons, Inc

69. MillerVL

MekalanosJJ

1988 A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170 2575 2583

70. WilkieIW

GrimesSE

O'BoyleD

FrostAJ

2000 The virulence and protective efficacy for chickens of Pasteurella multocida administered by different routes. Vet Microbiol 72 57 68

71. HarperM

CoxAD

St MichaelF

WilkieIW

BoyceJD

2004 A heptosyltransferase mutant of Pasteurella multocida produces a truncated lipopolysaccharide structure and is attenuated in virulence. Infect Immun 72 3436 3443

72. HomchampaP

StrugnellRA

AdlerB

1997 Cross protective immunity conferred by a marker-free aroA mutant of Pasteurella multocida. Vaccine 15 203 208

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2010 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#