Biomimetic Remineralization of Demineralized Dentine Using Scaffold of CMC/ACP Nanocomplexes in an In Vitro Tooth Model of Deep Caries


Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID).


Autoři: Zhen Chen 1;  Shansong Cao 1;  Haorong Wang 1;  Yanqiu Li 1;  Anil Kishen 2;  Xuliang Deng 3;  Xiaoping Yang 4;  Yinghui Wang 1;  Changhong Cong 1;  Huajun Wang 5;  Xu Zhang 1*
Působiště autorů: School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China 1;  Discipline of Endodontics, Faculty of Dentistry, University of Toronto, Toronto, Canada 2;  Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, PR China 3;  The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer, Beijing University of Chemical Technology, Beijing, PR China 4;  School of Energy and Environment Engineering, Hebei University of Technology, Tianjin, PR China 5
Vyšlo v časopise: PLoS ONE 10(1)
Kategorie: Research article
prolekare.web.journal.doi_sk: 10.1371/journal.pone.0116553

Copyright: © 2015 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
The electronic version of this article is the complete one and can be found online at: http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0116553

Souhrn

Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP) based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1) on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm) to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC) material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID).


Zdroje

1. Featherstone JD (2000) The science and practice of caries prevention. J Am Dent Assoc 131: 887–899. doi: 10.14219/jada.archive.2000.0307 PMID: 10916327

2. Arnold WH, Konopka S, Kriwalsky MS, Gaengler P (2003) Morphological analysis and chemical content of natural dentin carious lesion zones. Ann Anat 185: 419–424. doi: 10.1016/S0940-9602(03)80099-7 PMID: 14575268

3. Sakoolnamarka R, Burrow MF, Kubo S, Tyas MJ (2002) Morphological study of demineralized dentine after caries removal using two different methods. Aust Dent J 47: 116–122. doi: 10.1111/j.1834-7819.2002.tb00314.x PMID: 12139264

4. Christensen GJ (2005) The advantages of minimally invasive dentistry. J Am Dent Assoc 136: 1563–1565. doi: 10.14219/jada.archive.2005.0088 PMID: 16329421

5. Klont B, ten Cate JM (1991) Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Caries Res 25: 39–45. doi: 10.1159/000261340 PMID: 2070381

6. Klont B, ten Cate JM (1991) Susceptibility of the collagenous matrix from bovine incisor roots to proteolysis after in vitro lesion formation. Caries Res 25: 46–50. doi: 10.1159/000261341 PMID: 1649003

7. ten Cate JM (2001) Remineralization of caries lesions extend into dentine. J Dent Res 80: 1407–1411. doi: 10.1177/00220345010800050401 PMID: 11437209

8. ten Cate JM (2008) Remineralization of deep enamel dentine caries lesions. Aust Dent J 53: 281–285. doi: 10.1111/j.1834-7819.2008.00063.x PMID: 18782376

9. Preston KP, Smith PW, Higham SM (2008) The influence of varying fluoride concentrations on in vitro remineralisation of artificial dentinal lesions with differing lesion morphologies. Arch Oral Biol 53: 20–26. doi: 10.1016/j.archoralbio.2007.08.001 PMID: 17920030

10. Gupta A, Sinha N, Logani A, Shah N (2011) An ex vivo study to evaluate the remineralizing and antimicrobial efficacy of silver diamine fluoride and glass ionomer cement type VII for their proposed use as indirect pulp capping materials—Part I. J Conserv Dent 14: 113–116. doi: 10.4103/0972-0707.82603 PMID: 21814348

11. Marchi JJ, de Araujo FB, Fröner AM, Straffon LH, Nör JE (2006) Indirect pulp capping in the primary dentition: a 4 year follow-up study. J Clin Pediatr Dent 31: 68–71. PMID: 17315796

12. Eidelman E, Finn SB, Koulourides T (1965) Remineralization of carious dentin treated with calcium hydroxide. J Dent Child 32: 218–225. PMID: 5318013

13. Nakornchai S, Atsawasuwan P, Kitamura E, Surarit R, Yamauchi M (2004) Partial biochemical characterisation of collagen in carious dentin of human primary teeth. Arch Oral Biol 49: 267–273. doi: 10.1016/j.archoralbio.2003.11.003 PMID: 15003545

14. George A, Veis A (2008) Phosphorylated proteins and control over apatite nucleation, crystal growth and inhibition. Chem Rev 108: 4670–4693. doi: 10.1021/cr0782729 PMID: 18831570

15. He G, George A (2004) Dentin Matrix protein 1 immobilized on type I collagen fibrils facilitates apatite deposition in vitro. J Biol Chem 279: 11649–11656. doi: 10.1074/jbc.M309296200 PMID: 14699165

16. Burwell AK, Thula-Mata T, Gower LB, Habeliz S, Kurylo M, et al. (2012) Marshall GW. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PloS One 7:e38852. doi: 10.1371/journal.pone.0038852 PMID: 22719965

17. Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, et al. (2010) The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater 9: 1004–1009. doi: 10.1038/nmat2875 PMID: 20972429

18. Tay FR, Pashley DH (2008) Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 29: 1127–1137. doi: 10.1016/j.biomaterials.2007.11.001 PMID: 18022228

19. Liu Y, Kim YK, Dai L, Li N, Khan SO, et al. (2011) Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials 32: 1291–1300. doi: 10.1016/j.biomaterials.2010.10.018 PMID: 21040969

20. Arsenault AL (1988) Crystal-collagen relationships in calcified turkey leg tendons visualized by selected area dark field electron microscopy. Calcif Tissue Int 43: 202–212. doi: 10.1007/BF02555136 PMID: 3145125

21. Traub W, Arad T, Weiner S (1989) Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA 86: 9822–9826. doi: 10.1073/pnas.86.24.9822 PMID: 2602376

22. Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33: 192–202. doi: 10.1002/(SICI)1097-0029(19960201)33:2<192::AID-JEMT9>3.0.CO;2-V PMID: 8845518

23. Kinney JH, Habelitz S, Marshall SJ, MarshallGW (2003) The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res 82: 957–961. doi: 10.1177/154405910308201204 PMID: 14630894

24. Bertassoni LE, Habelitz S, Kinney JH, Marshall SJ, MarshallGW Jr (2009) Biomechanical perspective on the remineralization of dentin. Caries Res 43: 70–77. doi: 10.1159/000201593 PMID: 19208991

25. Andrew CA, Khor E, HastingsGW (1998) The influence of anionic chitin derivatives on calcium phosphate crystallization. Biomaterials 19: 1309–1316. doi: 10.1016/S0142-9612(98)00046-5 PMID: 9720895

26. Mourya VK, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1: 11–33. doi: 10.5185/amlett.2010.3108

27. Chen XG, Park HJ (2003) Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydr Polym 53: 355–359. doi: 10.1016/S0144-8617(03)00051-1

28. Kawasaki K, Ruben J, Stokroos I, Takagi O, Arends J (1999) The remineralization of EDTA-treated human dentine. Caries Res 33: 275–280. doi: 10.1159/000016529 PMID: 10343090

29. Zhou H, Bhaduri S (2012) Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater 100: 1142–1150. doi: 10.1002/jbm.b.32681 PMID: 22331618

30. Liang P, Zhao Y, Shen Q, Wang D, Xu D (2004) The effect of carboxymethyl chitosan on the precipitation of calcium carbonate. Cryst Growth Des 261: 571–576. doi: 10.1016/j.jcrysgro.2003.03.001

31. Jayakumar R, Nagahama H, Furuike T, Tamura H (2008) Synthesis of phosphorylated chitosan by novel method and its characterization. Int J Biol Macromol 42: 335–339. doi: 10.1016/j.ijbiomac.2007.12.011 PMID: 18279950

32. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27: 2907–2915. doi: 10.1016/j.biomaterials.2006.01.017 PMID: 16448693

33. Budiraharjo R, Neoh KG, Kang ET, Kishen A (2010) Bioactivity of novel carboxymethyl chitosan scaffold incorporating MTA in a tooth model. Int Endod J 43: 930–939. doi: 10.1111/j.1365-2591.2010.01771.x PMID: 20738427

34. Termine JD, Posner AS (1967) Amorphous/crystalline interrelationships in bone mineral. Calcif Tissue Res 1: 8–23. doi: 10.1007/BF02008070 PMID: 6060147

35. Zhao J, Liu Y, Sun WB, Zhang H (2011) Amorphous calcium phosphate and its application in dentistry. Chem Cent J 5: 40. doi: 10.1186/1752-153X-5-40 PMID: 21740535

36. Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6: 3362–3378. doi: 10.1016/j.actbio.2010.02.017 PMID: 20167295

37. Gower LB (2008) Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev 108: 4551–4627. doi: 10.1021/cr800443h PMID: 19006398

38. Olszta MJ, Odom DJ, Douglas EP, Gower LB (2003) A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res 44(Suppl. 1):326–334. doi: 10.1080/03008200390181852 PMID: 12952217

39. Gebauer D, Cölfen H (2011) Prenucleation clusters and non-classical nucleation. Nano Today 6: 564–584. doi: 10.1016/j.nantod.2011.10.005

40. Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8: 3271–3287. doi: 10.1039/b604589h PMID: 16835675

41. Chesnick IE, Mason JT, Giuseppetti AA, Eidelman N, Potter K (2008) Magnetic resonance microscopy of collagen mineralization. Biophys J 95: 2017–2026. doi: 10.1529/biophysj.107.120923 PMID: 18487295

42. Kim J, Arola DD, Gu L, Kim YK, Mai S, et al. (2010) Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach. Acta Biomater 6: 2740–2750. doi: 10.1016/j.actbio.2009.12.052 PMID: 20045745

43. Xu Z, Neoh KG, Lin CC, Kishen A (2011) Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralized dentine modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater 98: 150–159. doi: 10.1002/jbm.b.31844 PMID: 21538842

44. Lee JY, Choo JE, Choi YS, Park JB, Min DS, et al. (2007) Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28: 4257–4267. doi: 10.1016/j.biomaterials.2007.05.040 PMID: 17604098

45. Xu Z, Neoh KG, Lin CC, Kishen A (2012) Remineralization of partially demineralized dentine substrate based on a biomimetic strategy. J Mater Sci Mater Med 23: 733–742. doi: 10.1007/s10856-012-4550-5

46. Xu Z, Neoh KG, Kishen A (2010) A Biomimetic Strategy to Form Calcium Phosphate Crystals on Type I Collagen substrate. Mater Sci Eng C 30: 822–826. doi: 10.1016/j.msec.2010.03.014

47. Bystrom A, Claesson R, Sundqvist G (1985) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 1: 170–175. doi: 10.1111/j.1600-9657.1985.tb00652.x PMID: 3865763

48. Sangwan P, Sangwan A, Duhan J, Rohilla A (2013) Tertiary dentinogenesis with calcium hydroxide: a review of proposed mechanisms. Int Endod J 46: 3–19. doi: 10.1111/j.1365-2591.2012.02101.x PMID: 22889347

Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa