-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV–infected and HIV–negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV–infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host–pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21–infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5–19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5–20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV–infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.
Vyšlo v časopise: HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis. PLoS Genet 9(3): e32767. doi:10.1371/journal.pgen.1003318
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003318Souhrn
The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV–infected and HIV–negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV–infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host–pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21–infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5–19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5–20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV–infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.
Zdroje
1. WoolhouseME, WebsterJP, DomingoE, CharlesworthB, LevinBR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32 : 569–577.
2. GandonS, Van ZandtPA (1998) Local adaptation and host-parasite interactions. Trends Ecol Evol 13 : 214–216.
3. KaweckiTJ, EbertD (2004) Conceptual issues in local adaptation. Ecology Letters 7 : 1225–1241.
4. SchulteRD, MakusC, HasertB, MichielsNK, SchulenburgH (2011) Host-parasite local adaptation after experimental coevolution of Caenorhabditis elegans and its microparasite Bacillus thuringiensis. Proc Biol Sci 278 : 2832–2839.
5. AgnewP, KoellaC, MichalakisY (2000) Host life history responses to parasitism. Microbes Infect 2 : 891–896.
6. GandonS, AgnewP, MichalakisY (2002) Coevolution between parasite virulence and host life-history traits. Am Nat 160 : 374–388.
7. LivelyCM, DybdahlMF (2000) Parasite adaptation to locally common host genotypes. Nature 405 : 679–681.
8. BroschR, GordonSV, MarmiesseM, BrodinP, BuchrieserC, et al. (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99 : 3684–3689.
9. GagneuxS, DeRiemerK, VanT, Kato-MaedaM, de JongBC, et al. (2006) Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103 : 2869–2873.
10. GutierrezMC, BrisseS, BroschR, FabreM, OmaisB, et al. (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1: e5 doi:10.1371/journal.ppat.0010005.
11. HirshAE, TsolakiAG, DeRiemerK, FeldmanMW, SmallPM (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci U S A 101 : 4871–4876.
12. HershbergR, LipatovM, SmallPM, ShefferH, NiemannS, et al. (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6: e311 doi:10.1371/journal.pbio.0060311.
13. WirthT, HildebrandF, Allix-BeguecC, WolbelingF, KubicaT, et al. (2008) Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4: e1000160 doi:10.1371/journal.ppat.1000160.
14. Pearce-DuvetJM (2006) The origin of human pathogens: evaluating the role of agriculture and domestic animals in the evolution of human disease. Biol Rev Camb Philos Soc 81 : 369–382.
15. VinaMA, HollenbachJA, LykeKE, SzteinMB, MaiersM, et al. (2012) Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations. Philos Trans R Soc Lond B Biol Sci 367 : 820–829.
16. BrudeyK, DriscollJR, RigoutsL, ProdingerWM, GoriA, et al. (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6 : 23.
17. FilliolI, MotiwalaAS, CavatoreM, QiW, HazbonMH, et al. (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188 : 759–772.
18. BakerL, BrownT, MaidenMC, DrobniewskiF (2004) Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10 : 1568–1577.
19. ReedMB, PichlerVK, McIntoshF, MattiaA, FallowA, et al. (2009) Major Mycobacterium tuberculosis lineages associate with patient country of origin. J Clin Microbiol 47 : 1119–1128.
20. GutackerMM, MathemaB, SoiniH, ShashkinaE, KreiswirthBN, et al. (2006) Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193 : 121–128.
21. GagneuxS (2012) Host–pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367 : 850–859.
22. BritesD, GagneuxS (2012) Old and new selective pressures on Mycobacterium tuberculosis. Infect Genet Evol 12 : 678–85.
23. Wicker HR, Fibbi R, Haug W (2004) “Ergebnisse des Nationalen Forschungsprogramms ‘Migration und interkulturelle Beziehungen’”. Seismo publishing, Zürich, Switzerland.
24. de JongBC, AntonioM, GagneuxS (2010) Mycobacterium africanum–review of an important cause of human tuberculosis in West Africa. PLoS Negl Trop Dis 4: e744 doi:10.1371/journal.pntd.0000744.
25. GagneuxS, SmallPM (2007) Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7 : 328–337.
26. Federal Office of Public Health (2011) Tuberkulose in der Schweiz 2005–2009. [Erratum appears in Bull Bundesamt für Gesundheit (Switzerland) 2011;(no 13):277]. Bull BAG (no 10) 205–213.
27. BorgdorffMW, NagelkerkeN, Van SoolingenD, de HaasPE, VeenJ, et al. (1998) Analysis of tuberculosis transmission between nationalities in the Netherlands in the period 1993–1995 using DNA fingerprinting. Am J Epidemiol 147 : 187–195.
28. LillebaekT, AndersenÅB, BauerJ, DirksenA, GlismannS, et al. (2001) Risk of Mycobacterium tuberculosis transmission in a low-incidence country due to immigration from high-incidence areas. J Clin Microbiol 39 : 855–861.
29. FennerL, GagneuxS, HelblingP, BattegayM, RiederHL, et al. (2012) Mycobacterium tuberculosis transmission in a country with low tuberculosis incidence: role of immigration and HIV infection. J Clin Microbiol 50 : 388–395.
30. SpiegelhalterDJ, MylesJP, JonesDR, AbramsKR (1999) Methods in health service research. An introduction to bayesian methods in health technology assessment. BMJ 319 : 508–512.
31. LawnSD, ZumlaAI (2011) Tuberculosis. Lancet 378 : 57–72.
32. RodrigoT, CaylàJA, Garcia de OlallaP, Galdós-TangüisH, JansàJM, et al. (1997) Characteristics of tuberculosis patients who generate secondary cases. Int J Tuberc Lung Dis 1 : 352–357.
33. ComstockGW, LivesayVT, WoolpertSF (1974) The prognosis of a positive tuberculin reaction in childhood and adolescence. Am J Epidemiol 99 : 131–138.
34. VynnyckyE, FinePEM (2000) Life time risks, incubation period, and serial interval of tuberculosis. Am J Epidemiol 152 : 247–263.
35. HorsburghCRJr (2004) Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med 350 : 2060–2067.
36. FennerL, EggerM, GagneuxS (2009) Annie Darwin's death, the evolution of tuberculosis and the need for systems epidemiology. Int J Epidemiol 38 : 1425–1428.
37. RiederHL (1999) Epidemiologic basis of tuberculosis control. International Union Against Tuberculosis and Lung Disease, Paris 1999.
38. FennerL, WeberR, SteffenR, SchlagenhaufP (2007) Imported infectious disease and purpose of travel, Switzerland. Emerg Infect Dis 13 : 217–222.
39. NegredoE, MassanellaM, PuigJ, Perez-AlvarezN, Gallego-EscuredoJM, et al. (2010) Nadir CD4 T cell count as predictor and high CD4 T cell intrinsic apoptosis as final mechanism of poor CD4 T cell recovery in virologically suppressed HIV–infected patients: clinical implications. Clin Infect Dis 50 : 1300–1308.
40. KelleyCF, KitchenCM, HuntPW, RodriguezB, HechtFM, et al. (2009) Incomplete peripheral CD4+ cell count restoration in HIV–infected patients receiving long-term antiretroviral treatment. Clin Infect Dis 48 : 787–794.
41. LangeCG, LedermanMM, MedvikK, AsaadR, WildM, et al. (2003) Nadir CD4+ T-cell count and numbers of CD28+ CD4+ T-cells predict functional responses to immunizations in chronic HIV–1 infection. AIDS 17 : 2015–2023.
42. DiedrichCR, FlynnJL (2011) HIV–1/Mycobacterium tuberculosis coinfection immunology: how does HIV–1 exacerbate tuberculosis? Infect Immun 79 : 1407–1417.
43. FalvoJV, RanjbarS, JasenoskyLD, GoldfeldAE (2011) Arc of a vicious circle: pathways activated by Mycobacterium tuberculosis that target the HIV–1 LTR. Am J Respir Cell Mol Biol 45 : 1116–24.
44. HoshinoY, NakataK, HoshinoS, HondaY, TseDB, et al. (2002) Maximal HIV–1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J Exp Med 195 : 495–505.
45. PatelNR, ZhuJ, TachadoSD, ZhangJ, WanZ, et al. (2007) HIV impairs TNF-alpha mediated macrophage apoptotic response to Mycobacterium tuberculosis. J Immunol 179 : 6973–6980.
46. GeldmacherC, SchuetzA, NgwenyamaN, CasazzaJP, SangaE, et al. (2008) Early depletion of Mycobacterium tuberculosis-specific T helper 1 cell responses after HIV–1 infection. J Infect Dis 198 : 1590–1598.
47. PortevinD, GagneuxS, ComasI, YoungD (2011) Human macrophage responses to clinical isolates from the Mycobacterium tuberculosis complex discriminate between ancient and modern lineages. PLoS Pathog 7: e1001307 doi:10.1371/journal.ppat.1001307.
48. MusserJM, KrollJS, GranoffDM, MoxonER, BrodeurBR, et al. (1990) Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev Infect Dis 12 : 75–111.
49. CaufieldPW (2009) Tracking human migration patterns through the oral bacterial flora. Clin Microbiol Infect 15 Suppl 1 : 37–39.
50. MonotM, HonoreN, GarnierT, ZidaneN, SherafiD, et al. (2009) Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41 : 1282–1289.
51. FalushD, WirthT, LinzB, PritchardJK, StephensM, et al. (2003) Traces of human migrations in Helicobacter pylori populations. Science 299 : 1582–1585.
52. LinzB, BallouxF, MoodleyY, ManicaA, LiuH, et al. (2007) An African origin for the intimate association between humans and Helicobacter pylori. Nature 445 : 915–918.
53. Aspholm-HurtigM, DailideG, LahmannM, KaliaA, IlverD, et al. (2004) Functional adaptation of BabA, the H. pylori ABO blood group antigen binding adhesin. Science 305 : 519–522.
54. ZdziarskiJ, BrzuszkiewiczE, WulltB, LiesegangH, BiranD, et al. (2010) Host imprints on bacterial genomes – rapid, divergent evolution in individual patients. PLoS Pathog 6: e1001078 doi:10.1371/journal.ppat.1001078.
55. CawsM, ThwaitesG, DunstanS, HawnTR, LanNT, et al. (2008) The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 4: e1000034 doi:10.1371/journal.ppat.1000034.
56. van CrevelR, ParwatiI, SahiratmadjaE, MarzukiS, OttenhoffTHM, et al. (2009) Infection with Mycobacterium tuberculosis Beijing genotype strains is associated with polymorphisms in SLC11A1/NRAMP1 in Indonesian patients with tuberculosis. J Infect Dis 200 : 1671–1674.
57. HerbF, ThyeT, NiemannS, BrowneEN, ChinbuahMA, et al. (2008) ALOX5 variants associated with susceptibility to human pulmonary tuberculosis. Hum Mol Genet 17 : 1052–1060.
58. IntemannCD, ThyeT, NiemannS, BrowneEN, AmanuaCM, et al. (2009) Autophagy gene variant IRGM −261T contributes to protection from tuberculosis caused by Mycobacterium tuberculosis but not by M. africanum strains. PLoS Pathog 5: e1000577 doi:10.1371/journal.ppat.1000577.
59. ThyeT, NiemannS, WalterK, HomolkaS, IntemannCD, et al. (2011) Variant G57E of mannose binding lectin associated with protection against tuberculosis caused by Mycobacterium africanum but not by M. tuberculosis. PLoS ONE 6: e20908 doi:10.1371/journal.pone.0020908.
60. KwanCK, ErnstJD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24 : 351–376.
61. FennerL, GagneuxS, JanssensJP, FehrJ, CavassiniM, et al. (2012) Tuberculosis in HIV–negative and HIV–infected patients in a low-incidence country: clinical characteristics and treatment outcomes. PLoS ONE 7: e34186 doi:10.1371/journal.pone.0034186.
62. FennerL, EggerM, BodmerT, AltpeterE, ZwahlenM, et al. (2012) Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 56 : 3047–3053.
63. Schoeni-AffolterF, LedergerberB, RickenbachM, RudinC, GunthardHF, et al. (2010) Cohort profile: the Swiss HIV Cohort study. Int J Epidemiol 39 : 1179–1189.
64. Allix-BeguecC, Fauville-DufauxM, SupplyP (2008) Three-year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 46 : 1398–1406.
65. SupplyP, AllixC, LesjeanS, Cardoso-OelemannM, Rusch-GerdesS, et al. (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44 : 4498–4510.
66. OelemannMC, DielR, VatinV, HaasW, Rusch-GerdesS, et al. (2007) Assessment of an optimized mycobacterial interspersed repetitive - unit-variable-number tandem-repeat typing system combined with spoligotyping for population-based molecular epidemiology studies of tuberculosis. J Clin Microbiol 45 : 691–697.
67. StuckiD, MallaB, HostettlerS, HunaT, FeldmannJ, et al. (2012) Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages. PLoS ONE 7: e41253 doi:10.1371/journal.pone.0041253.
68. FennerL, MallaB, NinetB, DubuisO, StuckiD, et al. (2011) “Pseudo-Beijing”: Evidence for convergent evolution in the direct repeat region of Mycobacterium tuberculosis. PLoS ONE 6: e24737 doi:10.1371/journal.pone.0024737.
69. SreevatsanS, PanX, StockbauerKE, ConnellND, KreiswirthBN, et al. (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94 : 9869–9874.
70. PearlJ (2010) An Introduction to Causal Inference. Int J Biostat 6: Article 7.
71. GelmanA, JakulinA, PittauMG, SuYS (2008) A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2 : 1360–1383.
72. BentleySD, ComasI, BryantJM, WalkerD, SmithNH, et al. (2012) The genome of Mycobacterium africanum West African 2 reveals a lineage-specific locus and genome erosion common to the M. tuberculosis complex. PLoS Negl Trop Dis 6: e1552 doi:10.1371/journal.pntd.0001552.
Štítky
Genetika Reprodukčná medicína
Článek Ubiquitous Polygenicity of Human Complex Traits: Genome-Wide Analysis of 49 Traits in KoreansČlánek Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal ProteomesČlánek RFX Transcription Factor DAF-19 Regulates 5-HT and Innate Immune Responses to Pathogenic Bacteria inČlánek Surveillance-Activated Defenses Block the ROS–Induced Mitochondrial Unfolded Protein ResponseČlánek Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 3- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Power and Predictive Accuracy of Polygenic Risk Scores
- Rare Copy Number Variants Are a Common Cause of Short Stature
- Coordination of Flower Maturation by a Regulatory Circuit of Three MicroRNAs
- Ubiquitous Polygenicity of Human Complex Traits: Genome-Wide Analysis of 49 Traits in Koreans
- Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution
- Mechanistic Insight into the Pathology of Polyalanine Expansion Disorders Revealed by a Mouse Model for X Linked Hypopituitarism
- Genome-Wide Association Study and Gene Expression Analysis Identifies as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis
- Problem Solved: An Interview with Sir Edwin Southern
- Long Interspersed Element–1 (LINE-1): Passenger or Driver in Human Neoplasms?
- Mouse HFM1/Mer3 Is Required for Crossover Formation and Complete Synapsis of Homologous Chromosomes during Meiosis
- Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal Proteomes
- A WRKY Transcription Factor Recruits the SYG1-Like Protein SHB1 to Activate Gene Expression and Seed Cavity Enlargement
- Microhomology-Mediated Mechanisms Underlie Non-Recurrent Disease-Causing Microdeletions of the Gene or Its Regulatory Domain
- Ancient Evolutionary Trade-Offs between Yeast Ploidy States
- Differential Evolutionary Fate of an Ancestral Primate Endogenous Retrovirus Envelope Gene, the EnvV , Captured for a Function in Placentation
- A Feed-Forward Loop Coupling Extracellular BMP Transport and Morphogenesis in Wing
- The Tomato Yellow Leaf Curl Virus Resistance Genes and Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases
- The U-Box E3 Ubiquitin Ligase TUD1 Functions with a Heterotrimeric G α Subunit to Regulate Brassinosteroid-Mediated Growth in Rice
- Role of the DSC1 Channel in Regulating Neuronal Excitability in : Extending Nervous System Stability under Stress
- –Independent Phenotypic Switching in and a Dual Role for Wor1 in Regulating Switching and Filamentation
- Pax6 Regulates Gene Expression in the Vertebrate Lens through miR-204
- Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression
- Genetic Architecture of Skin and Eye Color in an African-European Admixed Population
- Fine Characterisation of a Recombination Hotspot at the Locus and Resolution of the Paradoxical Excess of Duplications over Deletions in the General Population
- Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status
- Complex Patterns of Genomic Admixture within Southern Africa
- Yap- and Cdc42-Dependent Nephrogenesis and Morphogenesis during Mouse Kidney Development
- Molecular Networks of Human Muscle Adaptation to Exercise and Age
- Alp/Enigma Family Proteins Cooperate in Z-Disc Formation and Myofibril Assembly
- Polycomb Group Gene Regulates Rice () Seed Development and Grain Filling via a Mechanism Distinct from
- RFX Transcription Factor DAF-19 Regulates 5-HT and Innate Immune Responses to Pathogenic Bacteria in
- Distinct Molecular Strategies for Hox-Mediated Limb Suppression in : From Cooperativity to Dispensability/Antagonism in TALE Partnership
- A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan
- TDP2–Dependent Non-Homologous End-Joining Protects against Topoisomerase II–Induced DNA Breaks and Genome Instability in Cells and
- Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression
- Genome-Wide Association Study in Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk
- Coincident Resection at Both Ends of Random, γ–Induced Double-Strand Breaks Requires MRX (MRN), Sae2 (Ctp1), and Mre11-Nuclease
- Identification of a -Specific Modifier Locus at 6p24 Related to Breast Cancer Risk
- A Novel Function for the Hox Gene in the Male Accessory Gland Regulates the Long-Term Female Post-Mating Response in
- Tdp2: A Means to Fixing the Ends
- A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating mRNA Stability
- Association Mapping and the Genomic Consequences of Selection in Sunflower
- Histone Deacetylase 2 (HDAC2) Regulates Chromosome Segregation and Kinetochore Function via H4K16 Deacetylation during Oocyte Maturation in Mouse
- A Novel Mutation in the Upstream Open Reading Frame of the Gene Causes a MEN4 Phenotype
- Ataxin1L Is a Regulator of HSC Function Highlighting the Utility of Cross-Tissue Comparisons for Gene Discovery
- Human Spermatogenic Failure Purges Deleterious Mutation Load from the Autosomes and Both Sex Chromosomes, including the Gene
- A Conserved Upstream Motif Orchestrates Autonomous, Germline-Enriched Expression of piRNAs
- Statistical Analysis Reveals Co-Expression Patterns of Many Pairs of Genes in Yeast Are Jointly Regulated by Interacting Loci
- Matefin/SUN-1 Phosphorylation Is Part of a Surveillance Mechanism to Coordinate Chromosome Synapsis and Recombination with Meiotic Progression and Chromosome Movement
- A Role for the Malignant Brain Tumour (MBT) Domain Protein LIN-61 in DNA Double-Strand Break Repair by Homologous Recombination
- The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity
- Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB
- Surveillance-Activated Defenses Block the ROS–Induced Mitochondrial Unfolded Protein Response
- DNA Topoisomerase III Localizes to Centromeres and Affects Centromeric CENP-A Levels in Fission Yeast
- Genome-Wide Control of RNA Polymerase II Activity by Cohesin
- Divergent Selection Drives Genetic Differentiation in an R2R3-MYB Transcription Factor That Contributes to Incipient Speciation in
- NODULE INCEPTION Directly Targets Subunit Genes to Regulate Essential Processes of Root Nodule Development in
- Spreading of a Prion Domain from Cell-to-Cell by Vesicular Transport in
- Deficiency in Origin Licensing Proteins Impairs Cilia Formation: Implications for the Aetiology of Meier-Gorlin Syndrome
- Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice
- The Conserved SKN-1/Nrf2 Stress Response Pathway Regulates Synaptic Function in
- Functional Genomic Analysis of the Regulatory Network in
- Astakine 2—the Dark Knight Linking Melatonin to Circadian Regulation in Crustaceans
- CRL2 E3-Ligase Regulates Proliferation and Progression through Meiosis in the Germline
- Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in
- PRMT4 Is a Novel Coactivator of c-Myb-Dependent Transcription in Haematopoietic Cell Lines
- A Copy Number Variant at the Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit
- Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors
- HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis
- Trans-Ethnic Fine-Mapping of Lipid Loci Identifies Population-Specific Signals and Allelic Heterogeneity That Increases the Trait Variance Explained
- A Gene Transfer Agent and a Dynamic Repertoire of Secretion Systems Hold the Keys to the Explosive Radiation of the Emerging Pathogen
- The Role of ATM in the Deficiency in Nonhomologous End-Joining near Telomeres in a Human Cancer Cell Line
- Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions
- Nuclear Myosin 1c Facilitates the Chromatin Modifications Required to Activate rRNA Gene Transcription and Cell Cycle Progression
- Robust Prediction of Expression Differences among Human Individuals Using Only Genotype Information
- A Single Cohesin Complex Performs Mitotic and Meiotic Functions in the Protist
- The Role of the Arabidopsis Exosome in siRNA–Independent Silencing of Heterochromatic Loci
- Elevated Expression of the Integrin-Associated Protein PINCH Suppresses the Defects of Muscle Hypercontraction Mutants
- Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest
- Genome-Wide Testing of Putative Functional Exonic Variants in Relationship with Breast and Prostate Cancer Risk in a Multiethnic Population
- Heteroduplex DNA Position Defines the Roles of the Sgs1, Srs2, and Mph1 Helicases in Promoting Distinct Recombination Outcomes
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Fine Characterisation of a Recombination Hotspot at the Locus and Resolution of the Paradoxical Excess of Duplications over Deletions in the General Population
- Molecular Networks of Human Muscle Adaptation to Exercise and Age
- Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression
- Genome-Wide Association Study and Gene Expression Analysis Identifies as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy