-
Články
- Časopisy
- Kurzy
- Témy
- Kongresy
- Videa
- Podcasty
Molecular Networks of Human Muscle Adaptation to Exercise and Age
Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ∼580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ∼500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01–0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity.
Vyšlo v časopise: Molecular Networks of Human Muscle Adaptation to Exercise and Age. PLoS Genet 9(3): e32767. doi:10.1371/journal.pgen.1003389
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003389Souhrn
Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44) who then undertook 20 weeks of supervised resistance-exercise training (RET). Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%), and when applying Ingenuity Pathway Analysis (IPA) up-stream analysis to ∼580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR) signaling associating with growth (P = 1.4×10−30). Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6×10−13) and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = −2.3; P = 3×10−7)) with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET), they appear to represent “generic” physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52), with a continuum of subject ages (18–78 y), the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ∼500 genes highly enriched in post-transcriptional processes (P = 1×10−6) and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to the muscle age-related genes. Finally, a number of specific chromosomal loci, including 1q12 and 13q21, contributed by more than chance to the age-related gene list (P = 0.01–0.005), implying possible epigenetic events. We conclude that human muscle age-related molecular processes appear distinct from the processes regulated by those of physical activity.
Zdroje
1. AthertonPJ, SmithK (2012) Muscle protein synthesis in response to nutrition and exercise. The Journal of physiology 590 : 1049–1057.
2. BouchardC, RankinenT, TimmonsJA (2011) Genomics and Genetics in the Biology of Adaptation to Exercise. Comprehensive Physiology 1603–1648.
3. StephensNA, GallagherIJ, RooyackersO, SkipworthRJ, TanBH, et al. (2010) Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia. Genome Med 2 : 1.
4. GallagherIJ, StephensNA, MacDonaldAJ, SkipworthRJE, HusiH, et al. (2012) Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clinical cancer research: an official journal of the American Association for Cancer Research 18 : 2817–2827.
5. GloverEI, PhillipsSM, OatesBR, TangJE, TarnopolskyMA, et al. (2008) Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. The Journal of physiology 586 : 6049–6061.
6. GustafssonT, OsterlundT, FlanaganJN, Von WaldénF, TrappeTA, et al. (2010) Effects of 3 days unloading on molecular regulators of muscle size in humans. Journal of applied physiology (Bethesda, Md: 1985) 109 : 721–727.
7. KumarV, SelbyA, RankinD, PatelR, AthertonP, et al. (2009) Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. The Journal of physiology 587 : 211–217.
8. MitchellCJ, Churchward-VenneTA, WestDWD, BurdNA, BreenL, et al. (2012) Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of applied physiology (Bethesda, Md: 1985) 113 : 71–77.
9. Churchward-VenneTA, BurdNA, PhillipsSM (2012) Research Group EM (2012) Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutrition & metabolism 9 : 40.
10. RommelC, BodineSC, ClarkeBA, RossmanR, NunezL, et al. (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature cell biology 3 : 1009–1013.
11. IadevaiaV, HuoY, ZhangZ, FosterLJ, ProudCG (2012) Roles of the mammalian target of rapamycin, mTOR, in controlling ribosome biogenesis and protein synthesis. Biochemical Society transactions 40 : 168–172.
12. TerzisG, GeorgiadisG, StratakosG, VogiatzisI, KavourasS, et al. (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102 : 145–152.
13. DrummondMJ, MiyazakiM, DreyerHC, PenningsB, DhananiS, et al. (2009) Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. Journal of applied physiology (Bethesda, Md: 1985) 106 : 1403–1411.
14. DickinsonJM, FryCS, DrummondMJ, GundermannDM, WalkerDK, et al. (n.d.) Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 141 : 856–862.
15. FryCS, DrummondMJ, GlynnEL, DickinsonJM, GundermannDM, et al. (2011) Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skeletal muscle 1 : 11.
16. LiM, VerdijkLB, SakamotoK, ElyB, Van LoonLJC, et al. (2012) Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise. Mechanisms of ageing and development 133 : 655–664.
17. FarnfieldMM, BreenL, CareyKA, GarnhamA, Cameron-SmithD (2012) Activation of mTOR signalling in young and old human skeletal muscle in response to combined resistance exercise and whey protein ingestion. Applied physiology, nutrition, and metabolism = Physiologie appliquée, nutrition et métabolisme 37 : 21–30.
18. WestDWD, KujbidaGW, MooreDR, AthertonP, BurdNA, et al. (2009) Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587 : 5239–5247.
19. SpangenburgEE, Le RoithD, WardCW, BodineSC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. The Journal of physiology 586 : 283–291.
20. GoodmanCA, FreyJW, MabreyDM, JacobsBL, LincolnHC, et al. (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. The Journal of physiology 589 : 5485–5501.
21. CameraDM, EdgeJ, ShortMJ, HawleyJA, CoffeyVG (2010) Early time course of Akt phosphorylation after endurance and resistance exercise. Medicine and science in sports and exercise 42 : 1843–1852.
22. TimmonsJA (2011) Variability in training-induced skeletal muscle adaptation. J Appl Physiol 110 : 846–853.
23. MelovS, TarnopolskyMA, BeckmanK, FelkeyK, HubbardA (2007) Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2: e465 doi:10.1371/journal.pone.0000465.
24. RaueU, TrappeTA, EstremST, QianH-R, HelveringLM, et al. (2012) Transcriptome signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. Journal of applied physiology (Bethesda, Md: 1985) 112 : 1625–1636.
25. BellR, HubbardA, ChettierR, ChenD, MillerJP, et al. (2009) A human protein interaction network shows conservation of aging processes between human and invertebrate species. PLoS Genet 5: e1000414 doi:10.1371/journal.pgen.1000414.
26. WelleS, BrooksAI, DelehantyJM, NeedlerN, BhattK, et al. (2004) Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp Gerontol 39 : 369–377.
27. GiresiPG, StevensonEJ, TheilhaberJ, KoncarevicA, ParkingtonJ, et al. (2005) Identification of a molecular signature of sarcopenia. Physiol Genomics 21 : 253–263.
28. DavidsenPK, GallagherIJ, HartmanJW, TarnopolskyMA, DelaF, et al. (2011) High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol 110 : 309–317.
29. KellerP, VollaardNB, GustafssonT, GallagherIJ, SundbergCJ, et al. (2011) A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J Appl Physiol 110 : 46–59.
30. BouleNG, WeisnagelSJ, LakkaTA, TremblayA, BergmanRN, et al. (2005) Effects of exercise training on glucose homeostasis: the HERITAGE Family Study. Diabetes Care 28 : 108–114.
31. TimmonsJa, JanssonE, FischerH, GustafssonT, GreenhaffPL, et al. (2005) Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC biology 3 : 19. A.
32. VollaardNB, Constantin-TeodosiuD, FredrikssonK, RooyackersO, JanssonE, et al. (2009) Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol 106 : 1479–1486.
33. KellerP, VollaardN, BabrajJ, BallD, SewellDA, et al. (2007) Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training. Biochem Soc Trans 35 : 1306–1309.
34. TimmonsJA, KnudsenS, RankinenT, KochLG, SarzynskiM, et al. (2010) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of applied physiology 108 : 1487–1496.
35. FELCIANORM, BAVARIS, RICHARDSDR, BILLAUDJ-N, WARRENT, et al. (2013) Predictive systems biology approach to broad-spectrum, host-directed drug target discovery in infectious diseases. Pacific Symposium on Biocomputing 18 : 17–28 Available: http://psb.stanford.edu/psb-online/proceedings/psb13/felciano.pdf
36. TusherVG, TibshiraniR, ChuG (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98 : 5116–5121.
37. AthertonPJ, BabrajJ, SmithK, SinghJ, RennieMJ, et al. (2005) Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. Faseb J 19 : 786–788.
38. GustafsonWC, WeissWA (2010) Myc proteins as therapeutic targets. Oncogene 29 : 1249–1259.
39. WelleS, BrooksAI, DelehantyJM, NeedlerN, ThorntonCA (2003) Gene expression profile of aging in human muscle. Physiol Genomics 14 : 149–159.
40. GallagherI (2010) Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in Type 2 Diabetes. Genome Med 2 : 9.
41. TimmonsJA, NorrbomJ, ScheeleC, ThonbergH, WahlestedtC, et al. (2006) Expression profiling following local muscle inactivity in humans provides new perspective on diabetes-related genes. Genomics 87 : 165–172.
42. BouchardC, LeonAS, RaoDC, SkinnerJS, WilmoreJH, et al. (1995) The HERITAGE family study. Aims, design, and measurement protocol. Med Sci Sports Exerc 27 : 721–729.
43. De PreterK, BarriotR, SpelemanF, VandesompeleJ, MoreauY (2008) Positional gene enrichment analysis of gene sets for high-resolution identification of overrepresented chromosomal regions. Nucleic acids research 36: e43.
44. TimmonsJA, BaarK, DavidsenPK, AthertonPJ (2012) Is irisin a human exercise gene? Nature 488: E9–E10.
45. KadiF, PonsotE (2010) The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scandinavian journal of medicine & science in sports 20 : 39–48.
46. McCallGE, ByrnesWC, DickinsonA, PattanyPM, FleckSJ (1996) Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. Journal of applied physiology (Bethesda, Md: 1985) 81 : 2004–2012.
47. HolmL, Van HallG, RoseAJ, MillerBF, DoessingS, et al. (2010) Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. American journal of physiology Endocrinology and metabolism 298: E257–69.
48. HalevyO, LermanO (1993) Retinoic acid induces adult muscle cell differentiation mediated by the retinoic acid receptor-alpha. Journal of cellular physiology 154 : 566–572.
49. BunaciuRP, YenA (2011) Activation of the aryl hydrocarbon receptor AhR Promotes retinoic acid-induced differentiation of myeloblastic leukemia cells by restricting expression of the stem cell transcription factor Oct4. Cancer research 71 : 2371–2380.
50. McKayBR, O'ReillyCE, PhillipsSM, TarnopolskyMA, PariseG (2008) Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. The Journal of physiology 586 : 5549–5560.
51. PariseG, McKinnellIW, RudnickiMA (2008) Muscle satellite cell and atypical myogenic progenitor response following exercise. Muscle & nerve 37 : 611–619 Available: http://www.ncbi.nlm.nih.gov/pubmed/18351585 Accessed 12 October 2012.
52. GeY, SunY, ChenJ (2011) IGF-II is regulated by microRNA-125b in skeletal myogenesis. The Journal of cell biology 192 : 69–81.
53. SaitoA, SugawaraA, UrunoA, KudoM, KagechikaH, et al. (2007) All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrinology 148 : 1412–1423.
54. JohnstonAPW, BakerJ, BellamyLM, McKayBR, De LisioM, et al. (2010) Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS ONE 5: e15212 doi:10.1371/journal.pone.0015212.
55. GorskiDH, WalshK (2000) The Role of Homeobox Genes in Vascular Remodeling and Angiogenesis. Circulation Research 87 : 865–872.
56. PhillipsB, WilliamsJ, AthertonPJ, SmithK, HildebrandtW, et al. (2011) Resistance exercise training improves age-related declines in leg vascular conductance and rejuvenates acute leg blood flow responses to feeding and exercise. Journal of applied physiology (Bethesda, Md: 1985) 112 : 347–353.
57. GustafssonT, PuntschartA, KaijserL, JanssonE, SundbergCJ (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276: H679–85.
58. AxelD (2001) All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovascular Research 49 : 851–862.
59. OhtakeF, BabaA, TakadaI, OkadaM, IwasakiK, et al. (2007) Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446 : 562–566.
60. AbdelrahimM, SmithR, SafeS (2003) Aryl hydrocarbon receptor gene silencing with small inhibitory RNA differentially modulates Ah-responsiveness in MCF-7 and HepG2 cancer cells. Molecular pharmacology 63 : 1373–1381.
61. AmelnH, GustafssonT, SundbergCJ, OkamotoK, JanssonE, et al. (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. Faseb J 19 : 1009–1011.
62. AndreasenEA, MathewLK, LöhrCV, HassonR, TanguayRL (2007) Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration. Toxicological sciences: an official journal of the Society of Toxicology 95 : 215–226.
63. MurphyKA, QuadroL, WhiteLA (2007) The intersection between the aryl hydrocarbon receptor (AhR) - and retinoic acid-signaling pathways. Vitamins and hormones 75 : 33–67.
64. BammanMM, PetrellaJK, KimJS, MayhewDL, CrossJM (2007) Cluster analysis tests the importance of myogenic gene expression during myofiber hypertrophy in humans. J Appl Physiol 102 : 2232–2239.
65. MooreDR, Del BelNC, NiziKI, HartmanJW, TangJE, et al. (2007) Resistance training reduces fasted - and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J Nutr 137 : 985–991.
66. Von WaldenF, CasagrandeV, Östlund FarrantsA-K, NaderGA (2012) Mechanical loading induces the expression of a Pol I regulon at the onset of skeletal muscle hypertrophy. American journal of physiology Cell physiology 302: C1523–30.
67. WestDWD, BurdNA, CoffeyVG, BakerSK, BurkeLM, et al. (2011) Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. The American journal of clinical nutrition 94 : 795–803 doi:10.3945/ajcn.111.013722.
68. MooreDR, AthertonPJ, RennieMJ, TarnopolskyMA, PhillipsSM (2011) Resistance exercise enhances mTOR and MAPK signalling in human muscle over that seen at rest after bolus protein ingestion. Acta physiologica (Oxford, England) 201 : 365–372.
69. AthertonPJ, EtheridgeT, WattPW, WilkinsonD, SelbyA, et al. (2010) Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. The American journal of clinical nutrition 92 : 1080–1088.
70. GreenhaffPL, KaragounisLG, PeirceN, SimpsonEJ, HazellM, et al. (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295: E595–604.
71. MayhewDL, KimJS, CrossJM, FerrandoAA, BammanMM (2009) Translational signaling responses preceding resistance training-mediated myofiber hypertrophy in young and old humans. J Appl Physiol 107 : 1655–1662.
72. KenyonCJ (2010) The genetics of ageing. Nature 464 : 504–512.
73. JanssenI, HeymsfieldSB, RossR (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50 : 889–896.
74. GoodmanCA, MiuMH, FreyJW, MabreyDM, LincolnHC, et al. (2011) A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy. Mol Biol Cell 21 : 3258–3268.
75. BaarK, EsserK (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Physiol 276: C120–7.
76. MahoneyDJ, PariseG, MelovS, SafdarA, TarnopolskyMA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. Faseb J 19 : 1498–1500.
77. ZhengJ-Y, YuD, ForooharM, KoE, ChanJ, et al. (2003) Regulation of the expression of the prostate-specific antigen by claudin-7. The Journal of membrane biology 194 : 187–197.
78. KimHW, HaSH, LeeMN, HustonE, KimD-H, et al. (2010) Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Molecular and cellular biology 30 : 5406–5420.
79. DedeicZ, CeteraM, CohenTV, HolaskaJM (2011) Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes. Journal of cell science 124 : 1691–1702.
80. LipinskiC, HopkinsA (2004) Navigating chemical space for biology and medicine. Nature 432 : 855–861.
81. ShanksN, GreekR, GreekJ (2009) Are animal models predictive for humans? Philosophy, ethics, and humanities in medicine: PEHM 4 : 2.
82. HopkinsAL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4 : 682–690.
83. FredrikssonK, TjäderI, KellerP, PetrovicN, AhlmanB, et al. (2008) Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS ONE 3: e3686 doi:10.1371/journal.pone.0003686.
84. TimmonsJa (2011) What happens if you pose the wrong questions? The Journal of physiology 589 : 4799–4801.
85. GallagherD, VisserM, De MeersmanRE, SepulvedaD, BaumgartnerRN, et al. (1997) Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 83 : 229–239.
86. LambJ, CrawfordED, PeckD, ModellJW, BlatIC, et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313 : 1929–1935.
Štítky
Genetika Reprodukčná medicína
Článek Ubiquitous Polygenicity of Human Complex Traits: Genome-Wide Analysis of 49 Traits in KoreansČlánek Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal ProteomesČlánek RFX Transcription Factor DAF-19 Regulates 5-HT and Innate Immune Responses to Pathogenic Bacteria inČlánek Surveillance-Activated Defenses Block the ROS–Induced Mitochondrial Unfolded Protein ResponseČlánek Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice
Článok vyšiel v časopisePLOS Genetics
Najčítanejšie tento týždeň
2013 Číslo 3- Gynekologové a odborníci na reprodukční medicínu se sejdou na prvním virtuálním summitu
- Je „freeze-all“ pro všechny? Odborníci na fertilitu diskutovali na virtuálním summitu
-
Všetky články tohto čísla
- Power and Predictive Accuracy of Polygenic Risk Scores
- Rare Copy Number Variants Are a Common Cause of Short Stature
- Coordination of Flower Maturation by a Regulatory Circuit of Three MicroRNAs
- Ubiquitous Polygenicity of Human Complex Traits: Genome-Wide Analysis of 49 Traits in Koreans
- Genomic Evidence for Island Population Conversion Resolves Conflicting Theories of Polar Bear Evolution
- Mechanistic Insight into the Pathology of Polyalanine Expansion Disorders Revealed by a Mouse Model for X Linked Hypopituitarism
- Genome-Wide Association Study and Gene Expression Analysis Identifies as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis
- Problem Solved: An Interview with Sir Edwin Southern
- Long Interspersed Element–1 (LINE-1): Passenger or Driver in Human Neoplasms?
- Mouse HFM1/Mer3 Is Required for Crossover Formation and Complete Synapsis of Homologous Chromosomes during Meiosis
- Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal Proteomes
- A WRKY Transcription Factor Recruits the SYG1-Like Protein SHB1 to Activate Gene Expression and Seed Cavity Enlargement
- Microhomology-Mediated Mechanisms Underlie Non-Recurrent Disease-Causing Microdeletions of the Gene or Its Regulatory Domain
- Ancient Evolutionary Trade-Offs between Yeast Ploidy States
- Differential Evolutionary Fate of an Ancestral Primate Endogenous Retrovirus Envelope Gene, the EnvV , Captured for a Function in Placentation
- A Feed-Forward Loop Coupling Extracellular BMP Transport and Morphogenesis in Wing
- The Tomato Yellow Leaf Curl Virus Resistance Genes and Are Allelic and Code for DFDGD-Class RNA–Dependent RNA Polymerases
- The U-Box E3 Ubiquitin Ligase TUD1 Functions with a Heterotrimeric G α Subunit to Regulate Brassinosteroid-Mediated Growth in Rice
- Role of the DSC1 Channel in Regulating Neuronal Excitability in : Extending Nervous System Stability under Stress
- –Independent Phenotypic Switching in and a Dual Role for Wor1 in Regulating Switching and Filamentation
- Pax6 Regulates Gene Expression in the Vertebrate Lens through miR-204
- Blood-Informative Transcripts Define Nine Common Axes of Peripheral Blood Gene Expression
- Genetic Architecture of Skin and Eye Color in an African-European Admixed Population
- Fine Characterisation of a Recombination Hotspot at the Locus and Resolution of the Paradoxical Excess of Duplications over Deletions in the General Population
- Estrogen Mediated-Activation of miR-191/425 Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on Estrogen Receptor Status
- Complex Patterns of Genomic Admixture within Southern Africa
- Yap- and Cdc42-Dependent Nephrogenesis and Morphogenesis during Mouse Kidney Development
- Molecular Networks of Human Muscle Adaptation to Exercise and Age
- Alp/Enigma Family Proteins Cooperate in Z-Disc Formation and Myofibril Assembly
- Polycomb Group Gene Regulates Rice () Seed Development and Grain Filling via a Mechanism Distinct from
- RFX Transcription Factor DAF-19 Regulates 5-HT and Innate Immune Responses to Pathogenic Bacteria in
- Distinct Molecular Strategies for Hox-Mediated Limb Suppression in : From Cooperativity to Dispensability/Antagonism in TALE Partnership
- A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan
- TDP2–Dependent Non-Homologous End-Joining Protects against Topoisomerase II–Induced DNA Breaks and Genome Instability in Cells and
- Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression
- Genome-Wide Association Study in Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk
- Coincident Resection at Both Ends of Random, γ–Induced Double-Strand Breaks Requires MRX (MRN), Sae2 (Ctp1), and Mre11-Nuclease
- Identification of a -Specific Modifier Locus at 6p24 Related to Breast Cancer Risk
- A Novel Function for the Hox Gene in the Male Accessory Gland Regulates the Long-Term Female Post-Mating Response in
- Tdp2: A Means to Fixing the Ends
- A Novel Role for the RNA–Binding Protein FXR1P in Myoblasts Cell-Cycle Progression by Modulating mRNA Stability
- Association Mapping and the Genomic Consequences of Selection in Sunflower
- Histone Deacetylase 2 (HDAC2) Regulates Chromosome Segregation and Kinetochore Function via H4K16 Deacetylation during Oocyte Maturation in Mouse
- A Novel Mutation in the Upstream Open Reading Frame of the Gene Causes a MEN4 Phenotype
- Ataxin1L Is a Regulator of HSC Function Highlighting the Utility of Cross-Tissue Comparisons for Gene Discovery
- Human Spermatogenic Failure Purges Deleterious Mutation Load from the Autosomes and Both Sex Chromosomes, including the Gene
- A Conserved Upstream Motif Orchestrates Autonomous, Germline-Enriched Expression of piRNAs
- Statistical Analysis Reveals Co-Expression Patterns of Many Pairs of Genes in Yeast Are Jointly Regulated by Interacting Loci
- Matefin/SUN-1 Phosphorylation Is Part of a Surveillance Mechanism to Coordinate Chromosome Synapsis and Recombination with Meiotic Progression and Chromosome Movement
- A Role for the Malignant Brain Tumour (MBT) Domain Protein LIN-61 in DNA Double-Strand Break Repair by Homologous Recombination
- The Population and Evolutionary Dynamics of Phage and Bacteria with CRISPR–Mediated Immunity
- Long Noncoding RNA MALAT1 Controls Cell Cycle Progression by Regulating the Expression of Oncogenic Transcription Factor B-MYB
- Surveillance-Activated Defenses Block the ROS–Induced Mitochondrial Unfolded Protein Response
- DNA Topoisomerase III Localizes to Centromeres and Affects Centromeric CENP-A Levels in Fission Yeast
- Genome-Wide Control of RNA Polymerase II Activity by Cohesin
- Divergent Selection Drives Genetic Differentiation in an R2R3-MYB Transcription Factor That Contributes to Incipient Speciation in
- NODULE INCEPTION Directly Targets Subunit Genes to Regulate Essential Processes of Root Nodule Development in
- Spreading of a Prion Domain from Cell-to-Cell by Vesicular Transport in
- Deficiency in Origin Licensing Proteins Impairs Cilia Formation: Implications for the Aetiology of Meier-Gorlin Syndrome
- Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice
- The Conserved SKN-1/Nrf2 Stress Response Pathway Regulates Synaptic Function in
- Functional Genomic Analysis of the Regulatory Network in
- Astakine 2—the Dark Knight Linking Melatonin to Circadian Regulation in Crustaceans
- CRL2 E3-Ligase Regulates Proliferation and Progression through Meiosis in the Germline
- Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in
- PRMT4 Is a Novel Coactivator of c-Myb-Dependent Transcription in Haematopoietic Cell Lines
- A Copy Number Variant at the Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit
- Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors
- HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis
- Trans-Ethnic Fine-Mapping of Lipid Loci Identifies Population-Specific Signals and Allelic Heterogeneity That Increases the Trait Variance Explained
- A Gene Transfer Agent and a Dynamic Repertoire of Secretion Systems Hold the Keys to the Explosive Radiation of the Emerging Pathogen
- The Role of ATM in the Deficiency in Nonhomologous End-Joining near Telomeres in a Human Cancer Cell Line
- Dynamic Circadian Protein–Protein Interaction Networks Predict Temporal Organization of Cellular Functions
- Nuclear Myosin 1c Facilitates the Chromatin Modifications Required to Activate rRNA Gene Transcription and Cell Cycle Progression
- Robust Prediction of Expression Differences among Human Individuals Using Only Genotype Information
- A Single Cohesin Complex Performs Mitotic and Meiotic Functions in the Protist
- The Role of the Arabidopsis Exosome in siRNA–Independent Silencing of Heterochromatic Loci
- Elevated Expression of the Integrin-Associated Protein PINCH Suppresses the Defects of Muscle Hypercontraction Mutants
- Twist1 Controls a Cell-Specification Switch Governing Cell Fate Decisions within the Cardiac Neural Crest
- Genome-Wide Testing of Putative Functional Exonic Variants in Relationship with Breast and Prostate Cancer Risk in a Multiethnic Population
- Heteroduplex DNA Position Defines the Roles of the Sgs1, Srs2, and Mph1 Helicases in Promoting Distinct Recombination Outcomes
- PLOS Genetics
- Archív čísel
- Aktuálne číslo
- Informácie o časopise
Najčítanejšie v tomto čísle- Fine Characterisation of a Recombination Hotspot at the Locus and Resolution of the Paradoxical Excess of Duplications over Deletions in the General Population
- Molecular Networks of Human Muscle Adaptation to Exercise and Age
- Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression
- Genome-Wide Association Study and Gene Expression Analysis Identifies as a Predictor of Response to Etanercept Therapy in Rheumatoid Arthritis
Prihlásenie#ADS_BOTTOM_SCRIPTS#Zabudnuté hesloZadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.
- Časopisy