#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Copy Number Variant at the Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit


The domestic dog is a robust model for studying the genetics of complex disease susceptibility. The strategies used to develop and propagate modern breeds have resulted in an elevated risk for specific diseases in particular breeds. One example is that of Standard Poodles (STPOs), who have increased risk for squamous cell carcinoma of the digit (SCCD), a locally aggressive cancer that causes lytic bone lesions, sometimes with multiple toe recurrence. However, only STPOs of dark coat color are at high risk; light colored STPOs are almost entirely unaffected, suggesting that interactions between multiple pathways are necessary for oncogenesis. We performed a genome-wide association study (GWAS) on STPOs, comparing 31 SCCD cases to 34 unrelated black STPO controls. The peak SNP on canine chromosome 15 was statistically significant at the genome-wide level (Praw = 1.60×10−7; Pgenome = 0.0066). Additional mapping resolved the region to the KIT Ligand (KITLG) locus. Comparison of STPO cases to other at-risk breeds narrowed the locus to a 144.9-Kb region. Haplotype mapping among 84 STPO cases identified a minimal region of 28.3 Kb. A copy number variant (CNV) containing predicted enhancer elements was found to be strongly associated with SCCD in STPOs (P = 1.72×10−8). Light colored STPOs carry the CNV risk alleles at the same frequency as black STPOs, but are not susceptible to SCCD. A GWAS comparing 24 black and 24 light colored STPOs highlighted only the MC1R locus as significantly different between the two datasets, suggesting that a compensatory mutation within the MC1R locus likely protects light colored STPOs from disease. Our findings highlight a role for KITLG in SCCD susceptibility, as well as demonstrate that interactions between the KITLG and MC1R loci are potentially required for SCCD oncogenesis. These findings highlight how studies of breed-limited diseases are useful for disentangling multigene disorders.


Vyšlo v časopise: A Copy Number Variant at the Locus Likely Confers Risk for Canine Squamous Cell Carcinoma of the Digit. PLoS Genet 9(3): e32767. doi:10.1371/journal.pgen.1003409
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003409

Souhrn

The domestic dog is a robust model for studying the genetics of complex disease susceptibility. The strategies used to develop and propagate modern breeds have resulted in an elevated risk for specific diseases in particular breeds. One example is that of Standard Poodles (STPOs), who have increased risk for squamous cell carcinoma of the digit (SCCD), a locally aggressive cancer that causes lytic bone lesions, sometimes with multiple toe recurrence. However, only STPOs of dark coat color are at high risk; light colored STPOs are almost entirely unaffected, suggesting that interactions between multiple pathways are necessary for oncogenesis. We performed a genome-wide association study (GWAS) on STPOs, comparing 31 SCCD cases to 34 unrelated black STPO controls. The peak SNP on canine chromosome 15 was statistically significant at the genome-wide level (Praw = 1.60×10−7; Pgenome = 0.0066). Additional mapping resolved the region to the KIT Ligand (KITLG) locus. Comparison of STPO cases to other at-risk breeds narrowed the locus to a 144.9-Kb region. Haplotype mapping among 84 STPO cases identified a minimal region of 28.3 Kb. A copy number variant (CNV) containing predicted enhancer elements was found to be strongly associated with SCCD in STPOs (P = 1.72×10−8). Light colored STPOs carry the CNV risk alleles at the same frequency as black STPOs, but are not susceptible to SCCD. A GWAS comparing 24 black and 24 light colored STPOs highlighted only the MC1R locus as significantly different between the two datasets, suggesting that a compensatory mutation within the MC1R locus likely protects light colored STPOs from disease. Our findings highlight a role for KITLG in SCCD susceptibility, as well as demonstrate that interactions between the KITLG and MC1R loci are potentially required for SCCD oncogenesis. These findings highlight how studies of breed-limited diseases are useful for disentangling multigene disorders.


Zdroje

1. VailDM, MacEwenEG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Investigation 18: 781–792.

2. BronsonRT (1982) Variation in age at death of dogs of different sexes and breeds. Am J Vet Res 43: 2057–2059.

3. KhannaC, Lindblad-TohK, VailD, LondonC, BergmanP, et al. (2006) The dog as a cancer model. Nat Biotechnol 24: 1065–1066.

4. ShearinAL, OstranderEA (2010) Leading the way: canine models of genomics and disease. Dis Model Mech 3: 27–34.

5. KarlssonEK, Lindblad-TohK (2008) Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet 9: 713–724.

6. MerloDF, RossiL, PellegrinoC, CeppiM, CardellinoU, et al. (2008) Cancer incidence in pet dogs: findings of the Animal Tumor Registry of Genoa, Italy. J Vet Intern Med 22: 976–984.

7. DornCR (1976) Epidemiology of canine and feline tumors. Comp Cont Educ Pract Vet 12: 307–312.

8. OstranderEA (2012) Both ends of the leash: The human link to good dogs with bad genes. New Engl J Med 367: 636–646.

9. CadieuE, OstranderEA (2007) Canine genetics offers new mechanisms for the study of human cancer. Cancer Epidemiol Biomarkers Prev 16: 2181–2183.

10. OstranderEA, KruglyakL (2000) Unleashing the canine genome. Genome Res 10: 1271–1274.

11. ParkerHG, ShearinAL, OstranderEA (2010) Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annu Rev Genet 44: 309–336.

12. GoldsteinO, ZangerlB, Pearce-KellingS, SidjaninD, KijasJ, et al. (2006) Linkage disequilibrium mapping in domestic dog breeds narrows the progressive rod-cone degeneration interval and identifies ancestral disease-transmitting chromosome. Genomics 88: 541–550.

13. ParkerHG, KukekovaAV, AkeyDT, GoldsteinO, KirknessEF, et al. (2007) Breed relationships facilitate fine-mapping studies: A 7.8-kb deletion cosegregates with Collie eye anomaly across multiple dog breeds. Genome Res 17: 1652–1571.

14. KarlssonEK, BaranowskaI, WadeCM, Salmon HillbertzNHC, ZodyMC, et al. (2007) Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 39: 1321–1328.

15. Lindblad-TohK, WadeCM, MikkelsenTS, KarlssonEK, JaffeDB, et al. (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438: 803–819.

16. ChungCC, ChanockSJ (2011) Current status of genome-wide association studies in cancer. Hum Genet 130: 59–78.

17. FreseK, FrankH, EskensU (1983) Squamous cell carcinoma of the toes in dogs. Dtsch Tierarztl Wochenschr 90: 359–363.

18. GoldschmidtMH (1984) Basal- and squamous-cell neoplasms of dogs and cats. Am J Dermatopathol 6: 199–206.

19. O'BrienMG, BergJ, EnglerSJ (1992) Treatment by digital amputation of subungual squamous cell carcinoma in dogs: 21 cases (1987–1988). J Am Vet Med Assoc 201: 759–761.

20. MarinoDJ, MattiesenDT, StefanacciJD, MoroffSD (1995) Evaluation of dogs with digit masses: 117 cases (1981–1991). J Am Vet Med Assoc 207: 726–728.

21. HenryCJ, BrewerWGJr, WhitleyEM, TylerJW, OgilvieGK, et al. (2005) Canine digital tumors: a veterinary cooperative oncology group retrospective study of 64 dogs. J Vet Intern Med 19: 720–724.

22. WobeserBK, KidneyBA, PowersBE, WithrowSJ, MayerMN, et al. (2007) Agreement among surgical pathologists evaluating routine histologic sections of digits amputated from cats and dogs. J Vet Diagn Invest 19: 439–443.

23. ParadisM, ScottDW, BretonL (1989) Squamous cell carcinoma of the nail bed in three related giant schnauzers. Vet Rec 125: 322–324.

24. Goldschmidt M, Hendrick M (2008) Tumors of the Skin and Soft Tissues. In: Meuten DJ, editor. Tumors in Domestic Animals. Fourth ed. Ames, Iowa: Iowa State University Press. pp. 45–119.

25. Goldschmidt MH, Shofer FS (2005) Subungual Squamous Cell Carcinoma. OncoLink Vet. Avaiable: http://oncolink.org/types/article.cfm?c=0&s=69&ss=807&id=9527. Accessed 5 September 2012.

26. vonHoldtBM, PollingerJP, LohmuellerKE, HanE, ParkerHG, et al. (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464: 898–902.

27. BarrettJC, FryB, MallerJ, DalyMJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21: 263–265.

28. Brucker LW (2010) Standard Poodle Database version 6.2

29. NewtonJM, WilkieAL, HeL, JordanSA, MetallinosDL, et al. (2000) Melanocortin 1 receptor variation in the domestic dog. Mamm Genome 11: 24–30.

30. EvertsRE, RothuizenJ, van OostBA (2000) Identification of a premature stop codon in the melanocyte-stimulating hormone receptor gene (MC1R) in Labrador and Golden retrievers with yellow coat colour. Anim Genet 31: 194–199.

31. SchmutzSM, BerryereTG, GoldfinchAD (2002) TYRP1 and MC1R genotypes and their effects on coat color in dogs. Mamm Genome 13: 380–387.

32. SchmutzSM, MelekhovetsY (2012) Coat color DNA testing in dogs: Theory meets practice. Mol Cell Probes [Epub ahead of print].

33. JónasdóttirTJ, MellershCS, MoeL, HeggebøR, GamlemH, et al. (2000) Genetic mapping of a naturally occurring hereditary renal cancer syndrome in dogs. Proc Natl Acad Sci USA 97: 4132–4137.

34. ShearinAL, HedanB, CadieuE, ErichSA, SchmidtEV, et al. (2012) The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidmiol Biomarkers Prev 27: 1019–1027.

35. ParkerHG, KimLV, SutterNB, CarlsonS, LorentzenTD, et al. (2004) Genetic structure of the purebred domestic dog. Science 304: 1160–1164.

36. NicholasTJ, ChengZ, VenturaM, MealeyK, EichlerEE, et al. (2009) The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Res 39: 491–499.

37. ChenWK, SwartzJD, RushLJ, AlvarezCE (2009) Mapping DNA structural variation in dogs. Genome Res 39: 500–509.

38. NicholasTJ, BakerC, EichlerE, AkeyJM (2011) A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. BMC Genomics 12: 414.

39. BerglundJ, NevalainenEM, MolinAM, PerloskiM, AndreC, et al. (2012) Novel origins of copy number variation in the dog genome. Genome Biol 13: R73.

40. OlssonM, MeadowsJR, TruvéK, Rosengren PielbergG, PuppoF, et al. (2011) A Novel Unstable Duplication Upstream of HAS2 Predisposes to a Breed-Defining Skin Phenotype and a Periodic Fever Syndrome in Chinese Shar-Pei Dogs. PLoS Genet 7: e1001332 doi:10.1371/journal.pgen.1001332.

41. JaegerE, LeedhamS, LewisA, SegditsasS, BeckerM, et al. (2012) Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet 44: 699–703.

42. SulemP, GudbjartssonDF, StaceySN, HelgasonA, RafnarT, et al. (2007) Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet 39: 1443–1452.

43. Mengel-FromJ, WongTH, MorlingN, ReesJL, JacksonIJ (2009) Genetic determinants of hair and eye colours in the Scottish and Danish populations. BMC Genet 10: 88.

44. MillerCT, BelezaS, PollenAA, SchluterD, KittlesRA, et al. (2007) cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131: 1179–1189.

45. BoykoA, QuignonP, LiL, SchoenenbeckJ, DegenhardtJ, et al. (2010) Simplified genetic architecture underlies morphological variation in dogs. PLoS Biol 8: e1000451 doi:10.1371/journal.pbio.1000451.

46. VaysseA, RatnakumarA, DerrienT, AxelssonE, Rosengren PielbergG, et al. (2011) Identification of genomic regions associated with phenotypic variation between dog Breeds using selection mapping. PLoS Genet 7: e1002316 doi:10.1371/journal.pgen.1002316.

47. KanetskyPA, MitraN, VardhanabhutiS, LiM, VaughnDJ, et al. (2009) Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat Genet 41: 811–815.

48. RapleyEA, TurnbullC, Al OlamaAA, DermitzakisET, LingerR, et al. (2009) A genome-wide association study of testicular germ cell tumor. Nat Genet 41: 807–810.

49. RubinBP, HeinrichMC, CorlessCL (2007) Gastrointestinal stromal tumour. Lancet 369: 1731–1741.

50. GrossmannAH, GrossmannKF, WallanderML (2012) Molecular testing in malignant melanoma. Diagn Cytopathol 40: 503–510.

51. HerraizC, JourneF, Abdel-MalekZ, GhanemG, Jimenez-CervantesC, et al. (2011) Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT. Mol Endocrinol 25: 138–156.

52. LevyC, KhaledM, FisherDE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12: 406–414.

53. ImokawaG (2004) Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res 17: 96–110.

54. SchererD, KumarR (2010) Genetics of pigmentation in skin cancer–a review. Mutat Res 705: 141–153.

55. Rosengren PielbergG, GolovkoA, SundstromE, CurikI, LennartssonJ, et al. (2008) A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet 40: 1004–1009.

56. DaviesJR, Randerson-MoorJ, KukalizchK, HarlandM, KumarR, et al. (2012) Inherited variants in the MC1R gene and survival from cutaneous melanoma: a BioGenoMEL study. Pigment Cell Melanoma Res 25: 384–394.

57. PriceAL, PattersonNJ, PlengeRM, WeinblattME, ShadickNA, et al. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909.

58. PurcellS, NealeB, Todd-BrownK, ThomasL, FerreiraMA, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.

59. KangHM, SulJH, ServiceSK, ZaitlenNA, KongSY, et al. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42: 348–354.

60. RozenS, SkaletskyH (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386.

61. EwingB, HillierL, WendlMC, GreenP (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.

62. EwingB, GreenP (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194.

63. GordonD, AbajianC, GreenP (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202.

64. NickersonDA, TobeVO, TaylorSL (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res 25: 2745–2751.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 3
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#