#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity


Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.


Vyšlo v časopise: A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002481
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002481

Souhrn

Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches.


Zdroje

1. SchillingGSharpAHLoevSJWagsterMVLiSH 1995 Expression of the Huntington's disease (IT15) protein product in HD patients. Hum Mol Genet 4 1365 1371

2. SharpAHLoevSJSchillingGLiSHLiXJ 1995 Widespread expression of Huntington's disease gene (IT15) protein product. Neuron 14 1065 1074

3. VonsattelJPDiFigliaM 1998 Huntington disease. J Neuropathol Exp Neurol 57 369 384

4. ReinerAAlbinRLAndersonKDD'AmatoCJPenneyJB 1988 Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A 85 5733 5737

5. WalkerFO 2007 Huntington's disease. Lancet 369 218 228

6. RossCA 2002 Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35 819 822

7. IkedaHYamaguchiMSugaiSAzeYNarumiyaS 1996 Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13 196 202

8. GatchelJRZoghbiHY 2005 Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6 743 755

9. La SpadaARTaylorJP 2003 Polyglutamines placed into context. Neuron 38 681 684

10. OrrHTZoghbiHY 2007 Trinucleotide repeat disorders. Annu Rev Neurosci 30 575 621

11. NuciforaFCJrSasakiMPetersMFHuangHCooperJK 2001 Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291 2423 2428

12. WyttenbachACarmichaelJSwartzJFurlongRANarainY 2000 Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci U S A 97 2898 2903

13. ArrasateMMitraSSchweitzerESSegalMRFinkbeinerS 2004 Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431 805 810

14. RavikumarBVacherCBergerZDaviesJELuoS 2004 Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36 585 595

15. RavikumarBDudenRRubinszteinDC 2002 Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11 1107 1117

16. RanumLPDayJW 2004 Pathogenic RNA repeats: an expanding role in genetic disease. Trends Genet 20 506 512

17. LiLBBoniniNM 2010 Roles of trinucleotide-repeat RNA in neurological disease and degeneration. Trends Neurosci 33 292 298

18. LiLBYuZTengXBoniniNM 2008 RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453 1107 1111

19. YuZTengXBoniniNM 2011 Triplet Repeat-Derived siRNAs Enhance RNA-Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy. PLoS Genet 7 e1001340 doi:10.1371/journal.pgen.1001340

20. LawlorKTO'KeefeLVSamaraweeraSEvan EykCLMcLeodCJ 2011 Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases. Hum Mol Genet 20 3757 3768

21. SobczakKde MezerMMichlewskiGKrolJKrzyzosiakWJ 2003 RNA structure of trinucleotide repeats associated with human neurological diseases. Nucleic Acids Res 31 5469 5482

22. HandaVSahaTUsdinK 2003 The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. Nucleic Acids Res 31 6243 6248

23. KrolJFiszerAMykowskaASobczakKde MezerM 2007 Ribonuclease dicer cleaves triplet repeat hairpins into shorter repeats that silence specific targets. Mol Cell 25 575 586

24. RudnickiDDPletnikovaOVonsattelJPRossCAMargolisRL 2008 A comparison of huntington disease and huntington disease-like 2 neuropathology. J Neuropathol Exp Neurol 67 366 374

25. RudnickiDDHolmesSELinMWThorntonCARossCA 2007 Huntington's disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61 272 282

26. de MezerMWojciechowskaMNapieralaMSobczakKKrzyzosiakWJ 2011 Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Res 39 3852 3863

27. LeeJECooperTA 2009 Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans 37 1281 1286

28. SavasJNMakuskyAOttosenSBaillatDThenF 2008 Huntington's disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc Natl Acad Sci U S A 105 10820 10825

29. JohnsonRZuccatoCBelyaevNDGuestDJCattaneoE 2008 A microRNA-based gene dysregulation pathway in Huntington's disease. Neurobiol Dis 29 438 445

30. MartiEPantanoLBanez-CoronelMLlorensFMinones-MoyanoE 2010 A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 38 7219 7235

31. PackerANXingYHarperSQJonesLDavidsonBL 2008 The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease. J Neurosci 28 14341 14346

32. LeeSTChuKImWSYoonHJImJY 2011 Altered microRNA regulation in Huntington's disease models. Exp Neurol 227 172 179

33. ZuTGibbensBDotyNSGomes-PereiraMHuguetA 2011 Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 108 260 265

34. VisJCSchipperEde Boer-van HuizenRTVerbeekMMde WaalRM 2005 Expression pattern of apoptosis-related markers in Huntington's disease. Acta Neuropathol 109 321 328

35. KiechleTDedeogluAKubilusJKowallNWBealMF 2002 Cytochrome C and caspase-9 expression in Huntington's disease. Neuromolecular Med 1 183 195

36. AndrewSEGoldbergYPKremerBTeleniusHTheilmannJ 1993 The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet 4 398 403

37. MangiariniLSathasivamKSellerMCozensBHarperA 1996 Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87 493 506

38. BlazquezCChiarloneASagredoOAguadoTPazosMR 2010 Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease. Brain 134 119 136

39. FilipowiczWJaskiewiczLKolbFAPillaiRS 2005 Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15 331 341

40. LiuJCarmellMARivasFVMarsdenCGThomsonJM 2004 Argonaute2 is the catalytic engine of mammalian RNAi. Science 305 1437 1441

41. Valencia-SanchezMALiuJHannonGJParkerR 2006 Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20 515 524

42. MeisterGLandthalerMPatkaniowskaADorsettYTengG 2004 Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15 185 197

43. DoenchJGSharpPA 2004 Specificity of microRNA target selection in translational repression. Genes Dev 18 504 511

44. HodgesAStrandADAragakiAKKuhnASengstagT 2006 Regional and cellular gene expression changes in human Huntington's disease brain. Hum Mol Genet 15 965 977

45. ChungDWRudnickiDDYuLMargolisRL 2011 A natural antisense transcript at the Huntington's disease repeat locus regulates HTT expression. Hum Mol Genet 20 3467 3477

46. DuyaoMAmbroseCMyersRNovellettoAPersichettiF 1993 Trinucleotide repeat length instability and age of onset in Huntington's disease. Nat Genet 4 387 392

47. KrolJLoedigeIFilipowiczW 2010 The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11 597 610

48. BartelDP 2009 MicroRNAs: target recognition and regulatory functions. Cell 136 215 233

49. ShinCNamJWFarhKKChiangHRShkumatavaA 2010 Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38 789 802

50. EiringAMHarbJGNevianiPGartonCOaksJJ 2010 miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell 140 652 665

51. MykowskaASobczakKWojciechowskaMKozlowskiPKrzyzosiakWJ 2011 CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 39 8938 8951

52. PresgravesSPAhmedTBorwegeSJoyceJN 2004 Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox Res 5 579 598

53. Banez-CoronelMRamirez de MolinaARodriguez-GonzalezASarmenteroJRamosMA 2008 Choline kinase alpha depletion selectively kills tumoral cells. Curr Cancer Drug Targets 8 709 719

54. HendricksonDGHoganDJHerschlagDFerrellJEBrownPO 2008 Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3 e2126 doi:10.1371/journal.pone.0002126

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#