#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Nondisjunction of a Single Chromosome Leads to Breakage and Activation of DNA Damage Checkpoint in G2


The resolution of chromosomes during anaphase is a key step in mitosis. Failure to disjoin chromatids compromises the fidelity of chromosome inheritance and generates aneuploidy and chromosome rearrangements, conditions linked to cancer development. Inactivation of topoisomerase II, condensin, or separase leads to gross chromosome nondisjunction. However, the fate of cells when one or a few chromosomes fail to separate has not been determined. Here, we describe a genetic system to induce mitotic progression in the presence of nondisjunction in yeast chromosome XII right arm (cXIIr), which allows the characterisation of the cellular fate of the progeny. Surprisingly, we find that the execution of karyokinesis and cytokinesis is timely and produces severing of cXIIr on or near the repetitive ribosomal gene array. Consequently, one end of the broken chromatid finishes up in each of the new daughter cells, generating a novel type of one-ended double-strand break. Importantly, both daughter cells enter a new cycle and the damage is not detected until the next G2, when cells arrest in a Rad9-dependent manner. Cytologically, we observed the accumulation of damage foci containing RPA/Rad52 proteins but failed to detect Mre11, indicating that cells attempt to repair both chromosome arms through a MRX-independent recombinational pathway. Finally, we analysed several surviving colonies arising after just one cell cycle with cXIIr nondisjunction. We found that aberrant forms of the chromosome were recovered, especially when RAD52 was deleted. Our results demonstrate that, in yeast cells, the Rad9-DNA damage checkpoint plays an important role responding to compromised genome integrity caused by mitotic nondisjunction.


Vyšlo v časopise: Nondisjunction of a Single Chromosome Leads to Breakage and Activation of DNA Damage Checkpoint in G2. PLoS Genet 8(2): e32767. doi:10.1371/journal.pgen.1002509
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002509

Souhrn

The resolution of chromosomes during anaphase is a key step in mitosis. Failure to disjoin chromatids compromises the fidelity of chromosome inheritance and generates aneuploidy and chromosome rearrangements, conditions linked to cancer development. Inactivation of topoisomerase II, condensin, or separase leads to gross chromosome nondisjunction. However, the fate of cells when one or a few chromosomes fail to separate has not been determined. Here, we describe a genetic system to induce mitotic progression in the presence of nondisjunction in yeast chromosome XII right arm (cXIIr), which allows the characterisation of the cellular fate of the progeny. Surprisingly, we find that the execution of karyokinesis and cytokinesis is timely and produces severing of cXIIr on or near the repetitive ribosomal gene array. Consequently, one end of the broken chromatid finishes up in each of the new daughter cells, generating a novel type of one-ended double-strand break. Importantly, both daughter cells enter a new cycle and the damage is not detected until the next G2, when cells arrest in a Rad9-dependent manner. Cytologically, we observed the accumulation of damage foci containing RPA/Rad52 proteins but failed to detect Mre11, indicating that cells attempt to repair both chromosome arms through a MRX-independent recombinational pathway. Finally, we analysed several surviving colonies arising after just one cell cycle with cXIIr nondisjunction. We found that aberrant forms of the chromosome were recovered, especially when RAD52 was deleted. Our results demonstrate that, in yeast cells, the Rad9-DNA damage checkpoint plays an important role responding to compromised genome integrity caused by mitotic nondisjunction.


Zdroje

1. FujiwaraTBandiMNittaMIvanovaEVBronsonRT 2005 Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437 1043 7

2. ShiQKingRW 2005 Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437 1038 42

3. BajerA 1964 Cine-Micrographic Studies On Dicentric Chromosomes. Chromosoma 15 630 51

4. McClintockB 1939 The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci USA 25 405 16

5. McClintockB 1941 The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26 234 82

6. GisselssonDPetterssonLHöglundMHeidenbladMGorunovaL 2000 Chromosomal breakage-fusion-bridge events cause genetic intratumor heterogeneity. Proc Natl Acad Sci USA 97 5357 62

7. ShimizuNShingakiKKaneko-SasaguriYHashizumeTKandaT 2005 When, where and how the bridge breaks: anaphase bridge breakage plays a crucial role in gene amplification and HSR generation. Exp Cell Res 302 233 43

8. VukovicBBeheshtiBParkPLimGBayaniJ 2007 Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer. Cytogenet Genome Res 116 1 11

9. FrenchJDDunnJSmartCEManningNBrownMA 2006 Disruption of BRCA1 function results in telomere lengthening and increased anaphase bridge formation in immortalized cell lines. Genes Chromosomes Cancer 45 277 89

10. Cuevas-RamosGPetitCRMarcqIBouryMOswaldE 2010 Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107 11537 42

11. Giménez-AbiánJFClarkeDJGiménez-MartínGWeingartnerMGiménez-AbiánMI 2002 DNA catenations that link sister chromatids until the onset of anaphase are maintained by a checkpoint mechanism. Eur J Cell Biol 81 9 16

12. LuoLZWernerKMGollinSMSaundersWS 2004 Cigarette smoke induces anaphase bridges and genomic imbalances in normal cells. Mutat Res 554 375 85

13. Díaz-MartínezLaGiménez-AbiánJFClarkeDJ 2008 Chromosome cohesion - rings, knots, orcs and fellowship. J Cell Sci 121 2107 14

14. UhlmannFLottspeichFNasmythK 1999 Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400 37 42

15. StrunnikovAVHoganEKoshlandD 1995 SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9 587 599

16. HolmCGotoTWangJCBotsteinD 1985 DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41 553 63

17. HolmCStearnsTBotsteinD 1989 DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol 9 159 68

18. DiNardoSVoelkelKSternglanzR 1984 DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci USA 81 2616 20

19. FreemanLAragon-AlcaideLStrunnikovA 2000 The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149 811 24

20. BhallaNBigginsSMurrayAW 2002 Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol Biol Cell 13 632 45

21. SpellRMHolmC 1994 Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae. Mol Cell Biol 14 1465 76

22. D'AmoursDStegmeierFAmonA 2004 Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117 455 69

23. MachínFTorres-RosellJJarmuzAAragónL 2005 Spindle-independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J Cell Biol 168 209 19

24. Torres-RosellJMachínFJarmuzAAragónL 2004 Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell cycle 3 496 502

25. GranotDSnyderM 1991 Segregation of the nucleolus during mitosis in budding and fission yeast. Cell Motil Cytoskeleton 20 47 54

26. StegmeierFAmonA 2004 Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu Rev Genet 38 203 32

27. SullivanMHiguchiTKatisVLUhlmannF 2004 Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117 471 82

28. MachínFTorres-RosellJPiccoliGDeCarballoJAChaRS 2006 Transcription of ribosomal genes can cause nondisjunction. J Cell Biol 173 893 903

29. GuacciVHoganEKoshlandD 1994 Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125 517 30

30. Clemente-BlancoAMayán-SantosMSchneiderDAMachínFJarmuzA 2009 Cdc14 inhibits transcription by RNA polymerase I during anaphase. Nature 458 219 22

31. WangB-DYong-GonzalezVStrunnikovAV 2004 Cdc14p/FEAR pathway controls segregation of nucleolus in S. cerevisiae by facilitating condensin targeting to rDNA chromatin in anaphase. Cell cycle 3 960 7

32. BaxterJDiffleyJFX 2008 Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30 790 802

33. DulevSRentyCdeMehtaRMinkovISchwobE 2009 Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. Proc Natl Acad Sci USA 106 14466 71

34. CulottiJHartwellLH 1971 Genetic control of the cell division cycle in yeast. 3. Seven genes controlling nuclear division. Exp Cell Res 67 389 401

35. HennessyKMLeeAChenEBotsteinD 1991 A group of interacting yeast DNA replication genes. Genes Dev 5 958 969

36. BurkeDJChurchD 1991 Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 11 3691 8

37. MendozaMNordenCDurrerKRauterHUhlmannF 2009 A mechanism for chromosome segregation sensing by the NoCut checkpoint. Nat Cell Biol 11 477 83

38. NordenCMendozaMDobbelaereJKotwaliwaleCVBigginsS 2006 The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125 85 98

39. HartwellLH 1971 Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69 265 76

40. TollidayNVerPlankLLiR 2002 Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr Biol 12 1864 70

41. WeinertTAHartwellLH 1988 The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241 317 22

42. PâquesFHaberJE 1999 Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63 349 404

43. LisbyMRothsteinRMortensenUH 2001 Rad52 forms DNA repair and recombination centers during S phase. Proc Natl Acad Sci USA 98 8276

44. Torres-RosellJSunjevaricIPiccoliGDeSacherMEckert-BouletN 2007 The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat Cell Biol 9 923 31 doi:10.1038/ncb1619

45. ZierhutCDiffleyJFX 2008 Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J 27 1875 85

46. BarlowJHLisbyMRothsteinR 2008 Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol Cell 30 73 85

47. GarvikBCarsonMHartwellL 1995 Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15 6128 38

48. ZouLElledgeSJ 2003 Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300 1542 8

49. LisbyMBarlowJHBurgessRCRothsteinR 2004 Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118 699 713

50. GeraldJNFBenjaminJMKronSJ 2002 Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair. J Cell Sci 115 1749 57

51. BystrickyKLarocheTHouweGvanBlaszczykMGasserSM 2005 Chromosome looping in yeast: telomere pairing and coordinated movement reflect anchoring efficiency and territorial organization. J Cell Biol 168 375 87

52. FitzpatrickPJToynJHMillarJBJohnstonLH 1998 DNA replication is completed in Saccharomyces cerevisiae cells that lack functional Cdc14, a dual-specificity protein phosphatase. Mol Gen Genet 258 437 41

53. LengronneASchwobE 2002 The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9 1067 78

54. Torres-RosellJMachínFFarmerSJarmuzAEydmannT 2005 SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol 7 412 9

55. HillABloomK 1989 Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae. Mol Cell Biol 9 1368 70

56. YangSSYehESalmonEDBloomK 1997 Identification of a mid-anaphase checkpoint in budding yeast. J Cell Biol 136 345 54

57. ThrowerDABloomK 2001 Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol Biol Cell 12 2800 12

58. HaberJEThorburnPC 1984 Healing of broken linear dicentric chromosomes in yeast. Genetics 106 207 26

59. HaberJE 1998 The many interfaces of Mre11. Cell 95 583 6

60. JanssenAvan der BurgMSzuhaiKKopsGJMedemaRH 2011 Chromosome Segregation Errors as a Cause of DNA Damage and Structural Chromosome Aberrations. Science 333 1895 1898

61. KnopMSiegersKPereiraGZachariaeWWinsorB 1999 Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15 963 72

62. JankeCMagieraMMRathfelderNTaxisCReberS 2004 A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21 947 62

63. CarpenterAEJonesTRLamprechtMRClarkeCKangIH 2006 CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7: R100. Available: http://genomebiology.com/content/7/10/R100

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 2
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#