#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Targeted Glycan-Related Gene Screen Reveals Heparan Sulfate Proteoglycan Sulfation Regulates WNT and BMP Trans-Synaptic Signaling


A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.


Vyšlo v časopise: A Targeted Glycan-Related Gene Screen Reveals Heparan Sulfate Proteoglycan Sulfation Regulates WNT and BMP Trans-Synaptic Signaling. PLoS Genet 8(11): e32767. doi:10.1371/journal.pgen.1003031
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003031

Souhrn

A Drosophila transgenic RNAi screen targeting the glycan genome, including all N/O/GAG-glycan biosynthesis/modification enzymes and glycan-binding lectins, was conducted to discover novel glycan functions in synaptogenesis. As proof-of-product, we characterized functionally paired heparan sulfate (HS) 6-O-sulfotransferase (hs6st) and sulfatase (sulf1), which bidirectionally control HS proteoglycan (HSPG) sulfation. RNAi knockdown of hs6st and sulf1 causes opposite effects on functional synapse development, with decreased (hs6st) and increased (sulf1) neurotransmission strength confirmed in null mutants. HSPG co-receptors for WNT and BMP intercellular signaling, Dally-like Protein and Syndecan, are differentially misregulated in the synaptomatrix of these mutants. Consistently, hs6st and sulf1 nulls differentially elevate both WNT (Wingless; Wg) and BMP (Glass Bottom Boat; Gbb) ligand abundance in the synaptomatrix. Anterograde Wg signaling via Wg receptor dFrizzled2 C-terminus nuclear import and retrograde Gbb signaling via synaptic MAD phosphorylation and nuclear import are differentially activated in hs6st and sulf1 mutants. Consequently, transcriptional control of presynaptic glutamate release machinery and postsynaptic glutamate receptors is bidirectionally altered in hs6st and sulf1 mutants, explaining the bidirectional change in synaptic functional strength. Genetic correction of the altered WNT/BMP signaling restores normal synaptic development in both mutant conditions, proving that altered trans-synaptic signaling causes functional differentiation defects.


Zdroje

1. IozzoRV (1998) Matrix proteoglycans: From molecular design to cellular function. Annual Review of Biochemistry 67: 609–652.

2. VarkiA (2011) Evolutionary Forces Shaping the Golgi Glycosylation Machinery: Why Cell Surface Glycans Are Universal to Living Cells. Cold Spring Harbor Perspectives in Biology 3: a005462.

3. KleeneR, SchachnerM (2004) Glycans and neural cell interactions. Nature Reviews Neuroscience 5: 195–208.

4. DityatevA, SchachnerM (2006) The extracellular matrix and synapses. Cell and Tissue Research 326: 647–654.

5. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, et al.. (2009) Essentials of glycobiology.

6. HagenKGT, ZhangLP, TianE, ZhangY (2009) Glycobiology on the fly: Developmental and mechanistic insights from Drosophila. Glycobiology 19: 102–111.

7. BarrosCS, FrancoSJ, MuellerU (2011) Extracellular Matrix: Functions in the Nervous System. Cold Spring Harbor Perspectives in Biology 3.

8. VautrinJ (2010) The synaptomatrix: A solid though dynamic contact disconnecting transmissions from exocytotic events. Neurochemistry International 57: 85–96.

9. DaniN, BroadieK (2012) Glycosylated synaptomatrix regulation of trans-synaptic signaling. Developmental Neurobiology 72: 2–21.

10. RuppF, PayanDG, MagillsolcC, CowanDM, SchellerRH (1991) Structure and expression of rat agrin. Neuron 6: 811–823.

11. TsimKWK, RueggMA, EscherG, KrogerS, McMahanUJ (1992) cDNA that encodes active agrin. Neuron 8: 677–689.

12. TsenG, HalfterW, KrogerS, ColeGJ (1995) Agrin is a heparan-sulfate proteoglycan. Journal of Biological Chemistry 270: 3392–3399.

13. McDonnellKMW, GrowWA (2004) Reduced glycosaminoglycan sulfation diminishes the agrin signal transduction pathway. Developmental Neuroscience 26: 1–10.

14. ParkhomovskiyN, KammesheidtA, MartinPT (2000) N-acetyllactosamine and the CT carbohydrate antigen mediate agrin-dependent activation of MuSK and acetylcholine receptor clustering in skeletal muscle. Molecular and Cellular Neuroscience 15: 380–397.

15. RohrboughJ, RushtonE, WoodruffE, FergestadT, VigneswaranK, et al. (2007) Presynaptic establishment of the synaptic cleft extracellular matrix is required for post-synaptic differentiation. Genes & Development 21: 2607–2628.

16. RushtonE, RohrboughJ, BroadieK (2009) Presynaptic Secretion of Mind-the-Gap Organizes the Synaptic Extracellular Matrix-Integrin Interface and Postsynaptic Environments. Developmental Dynamics 238: 554–571.

17. RohrboughJ, BroadieK (2010) Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap. Development 137: 3523–3533.

18. RushtonE, RohrboughJ, DeutschK, BroadieK (2012) Structure-function analysis of endogenous lectin mind-the-gap in synaptogenesis. Developmental Neurobiology 72: 1161–1179.

19. CareyDJ (1997) Syndecans: Multifunctional cell-surface co-receptors. Biochemical Journal 327: 1–16.

20. DejimaK, KanaiMI, AkiyamaT, LevingsDC, NakatoH (2011) Novel Contact-dependent Bone Morphogenetic Protein (BMP) Signaling Mediated by Heparan Sulfate Proteoglycans. Journal of Biological Chemistry 286: 17103–17111.

21. YanD, LinX (2009) Shaping Morphogen Gradients by Proteoglycans. Cold Spring Harbor Perspectives in Biology 1: a002493.

22. KleinschmitA, KoyamaT, DejimaK, HayashiY, KamimuraK, et al. (2010) Drosophila heparan sulfate 6-O endosulfatase regualtes Wingless morphogen gradient formation. Developmental biology 345: 204–214.

23. PackardM, KooES, GorczycaM, SharpeJ, CumberledgeS, et al. (2002) The drosophila wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell 111: 319–330.

24. KorkutC, BudnikV (2009) WNTs tune up the neuromuscular junction. Nature Reviews Neuroscience 10: 627–634.

25. McCabeBD, MarquesG, HaghighiAP, FetterRD, CrottyML, et al. (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39: 241–254.

26. KeshishianH, KimYS (2004) Orchestrating development and function: retrograde BMP signaling in the Drosophila nervous system. Trends in Neurosciences 27: 143–147.

27. HoltCE, DicksonBJ (2005) Sugar codes for axons? Neuron 46: 169–172.

28. MataniP, SharrowM, TiemeyerM (2007) Ligand, modulatory, and co-receptor functions of neural glycans. Frontiers in Bioscience 12: 3852–3879.

29. YamaguchiY (2002) Glycobiology of the synapse: the role of glycans in the formation, maturation, and modulation of synapses. Biochimica Et Biophysica Acta-General Subjects 1573: 369–376.

30. MartinPT (2002) Glycobiology of the synapse. Glycobiology 12: 1R–7R.

31. MartinPT (2003) Glycobiology of the neuromuscular junction. Journal of Neurocytology 32: 915.

32. KeshishianH, BroadieK, ChibaA, BateM (1996) The Drosophila neuromuscular junction: A model system for studying synaptic development and function. Annual Review of Neuroscience 19: 545–575.

33. GramatesLS, BudnikV (1999) Assembly and maturation of the Drosophila larval neuromuscular junction. Neuromuscular Junctions in Drosophila 43: 93–+.

34. Ruiz-CanadaC, BudnikV (2006) Introduction on the use of the Drosophila embryonic/larval neuromuscular junction as a model system to study synapse development and function, and a brief summary of pathfinding and target recognition. Fly Neuromuscular Junction: Structure and Function, Second Edition 75: 1–31.

35. DietzlG, ChenD, SchnorrerF, SuKC, BarinovaY, et al. (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448: 151–U151.

36. WodarzA, HinzU, EngelbertM, KnustE (1995) Expression of crumbs confers apical character on plasma-membrane domains of ectodermal epithelia of Drosophila. Cell 82: 67–76.

37. KanehisaM, GotoS (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28: 27–30.

38. HoffmannR, ValenciaA (2004) A gene network for navigating the literature. Nature Genetics 36: 664–664.

39. TweedieS, AshburnerM, FallsK, LeylandP, McQuiltonP, et al. (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Research 37: D555–D559.

40. GattoCL, BroadieK (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135: 2637–2648.

41. BeumerKJ, RohrboughJ, ProkopA, BroadieK (1999) A role for PS integrins in morphological growth and synaptic function at the postembryonic neuromuscular junction of Drosophila. Development 126: 5833–5846.

42. YouJ, BelenkayaT, LinX (2011) Sulfated Is a Negative Feedback Regulator of Wingless in Drosophila. Developmental Dynamics 240: 640–648.

43. KamimuraK, FujiseM, VillaF, IzumiS, HabuchiH, et al. (2001) Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST) gene - Structure, expression, and function in the formation of the tracheal system. Journal of Biological Chemistry 276: 17014–17021.

44. AiXB, DoAT, LozynskaO, Kusche-GullbergM, LindahlU, et al. (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. Journal of Cell Biology 162: 341–351.

45. JohnsonKG, TenneyAP, GhoseA, DuckworthAM, HigashiME, et al. (2006) The HSPGs syndecan and dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 49: 517–531.

46. LinXH, PerrimonN (2000) Role of heparan sulfate proteoglycans in cell-cell signaling in Drosophila. Matrix Biology 19: 303–307.

47. HackerU, NybakkenK, PerrimonN (2005) Heparan sulphate proteoglycans: The sweet side of development. Nature Reviews Molecular Cell Biology 6: 530–541.

48. YanD, WuY, FengY, LinS-C, LinX (2009) The Core Protein of Glypican Daily-Like Determines Its Biphasic Activity in Wingless Morphogen Signaling. Developmental Cell 17: 470–481.

49. SalinasPC (2003) Synaptogenesis: Wnt and TGF-beta take centre stage. Current Biology 13: R60–R62.

50. MarquesG (2005) Morphogens and synaptogenesis in Drosophila. Journal of Neurobiology 64: 417–434.

51. PackardM, MathewD, BudnikV (2003) Wnts and TGF beta in synaptogenesis: Old friends signalling at new places. Nature Reviews Neuroscience 4: 113–120.

52. RawsonJM, LeeM, KennedyEL, SelleckSB (2003) Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor mad. Journal of Neurobiology 55: 134–150.

53. Cox M, Nelson D (2004) Lehninger, Principles of Biochemistry. 1100.

54. ShimokawaK, Kimura-YoshidaC, NagaiN, MukaiK, MatsubaraK, et al. (2011) Cell Surface Heparan Sulfate Chains Regulate Local Reception of FGF Signaling in the Mouse Embryo. Developmental Cell 21: 257–272.

55. SenA, YokokuraT, KankelMW, DimlichDN, ManentJ, et al. (2011) Modeling spinal muscular atrophy in Drosophila links Smn to FGF signaling. Journal of Cell Biology 192: 481–495.

56. ShishidoE, OnoN, KojimaT, SaigoK (1997) Requirements of DFR1/heartless, a mesoderm-specific Drosophila FGF-receptor, for the formation of heart, visceral and somatic muscles, and ensheathing of longitudinal axon tracts in CNS. Development 124: 2119–2128.

57. MathewD, AtamanB, ChenJY, ZhangYL, CumberledgeS, et al. (2005) Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science 310: 1344–1347.

58. KimNMG (2010) Identification of downstream targets of the Bone Morphogenetic Protein pathway in the Drosophila nervous system. Developmental Dynamics 239: 2413–2425.

59. MoscaTJ, SchwarzTL (2010) The nuclear import of Frizzled2-C by Importins-beta 11 and alpha 2 promotes postsynaptic development. Nature Neuroscience 13: 935–U950.

60. PerssonU, IzumiH, SouchelnytskyiS, ItohS, GrimsbyS, et al. (1998) The L45 loop in type I receptors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. Febs Letters 434: 83–87.

61. NahmM, LongAA, PaikSK, KimS, BaeYC, et al. (2010) The Cdc42-selective GAP Rich regulates postsynaptic development and retrograde BMP transsynaptic signaling. Journal of Cell Biology 191: 661–675.

62. Higashi-KovtunME, MoscaTJ, DickmanDK, MeinertzhagenIA, SchwarzTL (2010) Importin-beta 11 Regulates Synaptic Phosphorylated Mothers Against Decapentaplegic, and Thereby Influences Synaptic Development and Function at the Drosophila Neuromuscular Junction. Journal of Neuroscience 30: 5253–5268.

63. WaghDA, RasseTM, AsanE, HofbauerA, SchwenkertI, et al. (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila (vol 49, pg 833, 2006). Neuron 51: 275–275.

64. FeatherstoneDE, RushtonE, RohrboughJ, LieblF, KarrJ, et al. (2005) An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. Journal of Neuroscience 25: 3199–3208.

65. InlowJK, RestifoLL (2004) Molecular and comparative genetics of mental retardation. Genetics 166: 835–881.

66. MuntoniF, TorelliS, BrockingtonM (2008) Muscular dystrophies due to glycosylation defects. Neurotherapeutics 5: 627–632.

67. SchachterH, FreezeHH (2009) Glycosylation diseases: Quo vadis? Biochimica Et Biophysica Acta-Molecular Basis of Disease 1792: 925–930.

68. BelmonteMK, AllenG, Beckel-MitchenerA, BoulangerLM, CarperRA, et al. (2004) Autism and abnormal development of brain connectivity. Journal of Neuroscience 24: 9228–9231.

69. GattoCL, BroadieK (2011) Drosophila modeling of heritable neurodevelopmental disorders. Current Opinion in Neurobiology 21 (6) 834–41.

70. ZhangLP, ZhangY, Ten HagenKG (2008) A Mucin-type O-Glycosyltransferase Modulates Cell Adhesion during Drosophila Development. Journal of Biological Chemistry 283: 34076–34086.

71. ZhangLP, TranDT, Ten HagenKG (2010) An O-Glycosyltransferase Promotes Cell Adhesion during Development by Influencing Secretion of an Extracellular Matrix Integrin Ligand. Journal of Biological Chemistry 285: 19491–19501.

72. RohrboughJ, GrotewielMS, DavisRL, BroadieK (2000) Integrin-mediated regulation of synaptic morphology, transmission, and plasticity. Journal of Neuroscience 20: 6868–6878.

73. BeumerK, MatthiesHJG, BradshawA, BroadieK (2002) Integrins regulate DLG/FAS2 via a CaM kinase II-dependent pathway to mediate synapse elaboration and stabilization during postembryonic development. Development 129: 3381–3391.

74. ProkopenkoSN, HeYC, LuY, BellenHJ (2000) Mutations affecting the development of the peripheral nervous system in drosophila: A molecular screen for novel proteins. Genetics 156: 1691–1715.

75. DhootGK, GustafssonMK, AiXB, SunWT, StandifordDM, et al. (2001) Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science 293: 1663–1666.

76. MorinX, DanemanR, ZavortinkM, ChiaW (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 98: 15050–15055.

77. LaiJ-P, SandhuDS, YuC, HanT, MoserCD, et al. (2008) Sulfatase 2 up-regulates glypican 3, promotes fibroblast growth factor signaling, and decreases survival in hepatocellular carcinoma. Hepatology 47: 1211–1222.

78. HanC, YanD, BelenkayaTY, LinXJ (2005) Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132: 667–679.

79. PfeifferS, RicardoS, MannevilleJB, AlexandreC, VincentJP (2002) Producing cells retain and recycle wingless in Drosophila embryos. Current Biology 12: 957–962.

80. GorsiB, StringerSE (2007) Tinkering with heparan sulfate sulfation to steer development. Trends in Cell Biology 17: 173–177.

81. OtsukiS, HansonSR, MiyakiS, GroganSP, KinoshitaM, et al. (2010) Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proceedings of the National Academy of Sciences of the United States of America 107: 10202–10207.

82. BaegGH, PerrimonN (2000) Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Current Opinion in Cell Biology 12: 575–580.

83. BaegGH, LinXH, KhareN, BaumgartnerS, PerrimonN (2001) Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128: 87–94.

84. MohammadiM, OlsenSK, GoetzR (2005) A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Current Opinion in Structural Biology 15: 506–516.

85. AtamanB, AshleyJ, GorczycaD, GorczycaM, MathewD, et al. (2006) Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proceedings of the National Academy of Sciences of the United States of America 103: 7841–7846.

86. MarquesG, BaoH, HaerryTE, ShimellMJ, DuchekP, et al. (2002) The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33: 529–543.

87. WhartonKA, CookJM, Torres-SchumannS, de CastroK, BorodE, et al. (1999) Genetic analysis of the bone morphogenetic protein-related gene, gbb, identifies multiple requirements during Drosophila development. Genetics 152: 629–640.

88. McCabeBD, HomS, AberleH, FetterRD, MarquesG, et al. (2004) Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41: 891–905.

89. AberleH, HaghighiAP, FetterRD, McCabeBD, MagalhaesTR, et al. (2002) wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33: 545–558.

90. LinDM, GoodmanCS (1994) Ectopic and increased expression of Fasciclin-II alters motoneuron growth cone guidance. Neuron 13: 507–523.

91. BrandAH, PerrimonN (1993) Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.

92. SeppKJ, SchulteJ, AuldVJ (2001) Peripheral glia direct axon guidance across the CNS/PNS transition zone. Developmental Biology 238: 47–63.

93. KamimuraK, KoyamaT, HabuchiH, UedaR, MasuM, et al. (2006) Specific and flexible roles of heparan sulfate modifications in Drosophila FGF signaling. Journal of Cell Biology 174: 773–778.

94. MarieB, PymE, BergquistS, DavisGW (2010) Synaptic Homeostasis Is Consolidated by the Cell Fate Gene gooseberry, a Drosophila pax3/7 Homolog. Journal of Neuroscience 30: 8071–8082.

95. GooldCP, DavisGW (2007) The BMP ligand Gbb gates the expression of synaptic horneostasis independent of synaptic growth control. Neuron 56: 109–123.

96. SpringJ, PainesaundersSE, HynesRO, BernfieldM (1994) Drosophila Syndecan - conservation of a cell-surface heparan-sulfate proteoglycan. Proceedings of the National Academy of Sciences of the United States of America 91: 3334–3338.

97. FriedrichMVK, SchneiderM, TimplR, BaumgartnerS (2000) Perlecan domain V of Drosophila melanogaster - Sequence, recombinant analysis and tissue expression. European Journal of Biochemistry 267: 3149–3159.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#