#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Role of Pirh2 in Mediating the Regulation of p53 and c-Myc


Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2−/− mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor.


Vyšlo v časopise: Role of Pirh2 in Mediating the Regulation of p53 and c-Myc. PLoS Genet 7(11): e32767. doi:10.1371/journal.pgen.1002360
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002360

Souhrn

Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2−/− mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor.


Zdroje

1. WelchmanRLGordonCMayerRJ 2005 Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6 599 609

2. NakayamaKINakayamaK 2006 Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6 369 381

3. HoellerDHeckerCMDikicI 2006 Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nat Rev Cancer 6 776 788

4. BrooksCLGuW 2006 p53 ubiquitination: Mdm2 and beyond. Mol Cell 21 307 315

5. DaiCGuW 2010 p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 16 528 536

6. MullerJEilersM 2008 Ubiquitination of Myc: proteasomal degradation and beyond. Ernst Schering Found Symp Proc 99 113

7. NesbitCETersakJMProchownikEV 1999 MYC oncogenes and human neoplastic disease. Oncogene 18 3004 3016

8. AbeKHattoriTIsobeTKitagawaKOdaT 2008 Pirh2 interacts with and ubiquitylates signal recognition particle receptor beta subunit. Biomed Res 29 53 60

9. ChenDKonNLiMZhangWQinJ 2005 ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor. Cell 121 1071 1083

10. FinkinSAylonYAnziSOrenMShaulianE 2008 Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene 27 4411 4421

11. JonesSNRoeAEDonehowerLABradleyA 1995 Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378 206 208

12. Montes de Oca LunaRWagnerDSLozanoG 1995 Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378 203 206

13. RingshausenIO'SheaCCFinchAJSwigartLBEvanGI 2006 Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10 501 514

14. LengRPLinYMaWWuHLemmersB 2003 Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112 779 791

15. VousdenKHLaneDP 2007 p53 in health and disease. Nat Rev Mol Cell Biol 8 275 283

16. JungYSLiuGChenX 2010 Pirh2 E3 ubiquitin ligase targets DNA polymerase eta for 20S proteasomal degradation. Mol Cell Biol 30 1041 1048

17. KruseJPGuW 2009 Modes of p53 regulation. Cell 137 609 622

18. DumazNMeekDW 1999 Serine15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18 7002 7010

19. AshcroftMKubbutatMHVousdenKH 1999 Regulation of p53 function and stability by phosphorylation. Mol Cell Biol 19 1751 1758

20. MeyerNPennLZ 2008 Reflecting on 25 years with MYC. Nat Rev Cancer 8 976 990

21. MurphyDJJunttilaMRPouyetLKarnezisAShchorsK 2008 Distinct thresholds govern Myc's biological output in vivo. Cancer Cell 14 447 457

22. KimSYHerbstATworkowskiKASalghettiSETanseyWP 2003 Skp2 regulates Myc protein stability and activity. Mol Cell 11 1177 1188

23. von der LehrNJohanssonSWuSBahramFCastellA 2003 The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11 1189 1200

24. DuanWGaoLDruhanLJZhuWGMorrisonC 2004 Expression of Pirh2, a newly identified ubiquitin protein ligase, in lung cancer. J Natl Cancer Inst 96 1718 1721

25. LoganIRGaughanLMcCrackenSRSapountziVLeungHY 2006 Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol 26 6502 6510

26. WangYKlijnJGZhangYSieuwertsAMLookMP 2005 Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365 671 679

27. ChinKDeVriesSFridlyandJSpellmanPTRoydasguptaR 2006 Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10 529 541

28. BildAHYaoGChangJTWangQPottiA 2006 Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439 353 357

29. BerchuckAIversenESLancasterJMPittmanJLuoJ 2005 Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res 11 3686 3696

30. PottiAMukherjeeSPetersenRDressmanHKBildA 2006 A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355 570 580

31. RaponiMZhangYYuJChenGLeeG 2006 Gene expression signatures for predicting prognosis of squamous cell and adenocarcinomas of the lung. Cancer Res 66 7466 7472

32. RhodesDRYuJShankerKDeshpandeNVaramballyR 2004 ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6 1 6

33. HendrixNDWuRKuickRSchwartzDRFearonER 2006 Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res 66 1354 1362

34. KorkolaJEHouldsworthJChadalavadaRSOlshenABDobrzynskiD 2006 Down-regulation of stem cell genes, including those in a 200-kb gene cluster at 12p13.31, is associated with in vivo differentiation of human male germ cell tumors. Cancer Res 66 820 827

35. Sanchez-CarbayoMSocciNDLozanoJSaintFCordon-CardoC 2006 Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24 778 789

36. RutschSNeppalliVTShinDMDuBoisWMorseHC3rd 2010 IL-6 and MYC collaborate in plasma cell tumor formation in mice. Blood 115 1746 1754

37. McCormackSJWeaverZDemingSNatarajanGTorriJ 1998 Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability. Oncogene 16 2755 2766

38. ChesiMRobbianiDFSebagMChngWJAfferM 2008 AID-dependent activation of a MYC transgene induces multiple myeloma in a conditional mouse model of post-germinal center malignancies. Cancer Cell 13 167 180

39. NishimotoNKishimotoT 2006 Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol 2 619 626

40. AdhikarySMarinoniFHockAHullemanEPopovN 2005 The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 123 409 421

41. MomandJJungDWilczynskiSNilandJ 1998 The MDM2 gene amplification database. Nucleic Acids Res 26 3453 3459

42. DornanDBheddahSNewtonKInceWFrantzGD 2004 COP1, the negative regulator of p53, is overexpressed in breast and ovarian adenocarcinomas. Cancer Res 64 7226 7230

43. OnoyamaITsunematsuRMatsumotoAKimuraTde AlboranIM 2007 Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med 204 2875 2888

44. LiLHalabyMJHakemACardosoREl GhamrasniS 2010 Rnf8 deficiency impairs class switch recombination, spermatogenesis, and genomic integrity and predisposes for cancer. J Exp Med 207 983 997

45. GreenblattMSBennettWPHollsteinMHarrisCC 1994 Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54 4855 4878

46. SchmittCAMcCurrachMEde StanchinaEWallace-BrodeurRRLoweSW 1999 INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev 13 2670 2677

47. ItahanaKMaoHJinAItahanaYCleggHV 2007 Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12 355 366

48. TsunematsuRNakayamaKOikeYNishiyamaMIshidaN 2004 Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem 279 9417 9423

49. NakayamaKNagahamaHMinamishimaYAMatsumotoMNakamichiI 2000 Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J 19 2069 2081

50. YadaMHatakeyamaSKamuraTNishiyamaMTsunematsuR 2004 Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23 2116 2125

51. WeberJDTaylorLJRousselMFSherrCJBar-SagiD 1999 Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1 20 26

52. BaudisM 2006 Online database and bioinformatics toolbox to support data mining in cancer cytogenetics. Biotechniques 40 269 270, 272

53. MitelmanFJBaMF 2008 Mitelman Database of Chromosome Aberrations in Cancer

54. DonehowerLAHarveyMSlagleBLMcArthurMJMontgomeryCAJr 1992 Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356 215 221

55. SalmenaLLemmersBHakemAMatysiak-ZablockiEMurakamiK 2003 Essential role for caspase 8 in T-cell homeostasis and T-cell-mediated immunity. Genes Dev 17 883 895

56. LauSKBoutrosPCPintilieMBlackhallFHZhuCQ 2007 Three-gene prognostic classifier for early-stage non small-cell lung cancer. J Clin Oncol 25 5562 5569

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#