#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

De Novo Origin of Human Protein-Coding Genes


The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.


Vyšlo v časopise: De Novo Origin of Human Protein-Coding Genes. PLoS Genet 7(11): e32767. doi:10.1371/journal.pgen.1002379
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002379

Souhrn

The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.


Zdroje

1. LongMBetránEThorntonKWangW 2003 The origin of new genes: glimpses from the young and old. Nat Rev Genet 4 865 875

2. KaessmannH 2010 Origins, evolution, and phenotypic impact of new genes. Genome Res 20 1313 1326

3. OhnoS 1970 Evolution by gene duplication Springer

4. JacobF 1977 Evolution and tinkering. Science 196 1161 1166

5. KnowlesDGMcLysaghtA 2009 Recent de novo origin of human protein-coding genes. Genome Res 19 1752 1759

6. LevineMTJonesCDKernADLindforsHABegunDJ 2006 Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci USA 103 9935 9939

7. BegunDJLindforsHAThompsonMEHollowayAK 2006 Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics 172 1675 1681

8. BegunDJLindforsHAKernADJonesCD 2007 Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176 1131 1137

9. ChenSTChengHCBarbashDAYangHP 2007 Evolution of hydra, a recently evolved testis-expressed gene with nine alternative first exons in Drosophila melanogaster. PLoS Genet 3 e107 doi:10.1371/journal.pgen.0030107

10. ZhouQZhangGZhangYXuSZhaoR 2008 On the origin of new genes in Drosophila. Genome Res 18 1446 1455

11. LiC-YZhangYWangZZhangYCaoC 2010 A human-specific de novo protein-coding gene associated with human brain functions. PLoS Comput Biol 6 e1000734 doi:10.1371/journal.pcbi.1000734

12. CaiJZhaoRJiangHWangW 2008 De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179 487 496

13. LiDDongYJiangYJiangHCaiJ 2010 A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res 20 408 420

14. XiaoWLiuHLiYLiXXuC 2009 A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS ONE 4 e4603 doi:10.1371/journal.pone.0004603

15. YangZHuangJ 2011 De novo origin of new genes with introns in Plasmodium vivax. FEBS letters 585 641 644

16. GontijoAMMiguelaVWhitingMFWoodruffRCDominguezM 2011 Intron retention in the Drosophila melanogaster Rieske iron sulphur protein gene generated a new protein. Nat Commun 2 323

17. WangJLiSTZhangYZhengHKXuZ 2003 Vertebrate gene predictions and the problem of large genes. Nat Rev Genet 4 741 749

18. YehRFLimLPBurgeCB 2001 Computational inference of homologous gene structures in the human genome. Genome Res 11 803 816

19. KarolchikDBaertschRDiekhansMFureyTSHinrichsA 2003 The UCSC genome browser database. Nucleic Acid Res 31 51 54

20. JonesPC téRGChoSYKlieSMartensL 2008 PRIDE: new developments and new datasets. Nucleic Acid Res 36 D878 D883

21. DeutschEWLamHAebersoldR 2008 PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO reports 9 429 434

22. Bornberg-BauerEHuylmansAKSikosekT 2010 How do new proteins arise? Curr Opin Struc Biol 20 390 396

23. WangZGersteinMSnyderM 2009 RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10 57 63

24. CaiJJPetrovDA 2010 Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evol 2 393 409

25. PanDZhangL 2007 Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates. Genome Biol 8 R158

26. LynchMConeryJS 2000 The evolutionary fate and consequences of duplicate genes. Science 290 1151 1154

27. KandelERSchwartzJHJessellTM 2000 Principles of neural science Fourth Edition McGraw-Hill

28. HillRSWalshCA 2005 Molecular insights into human brain evolution. Nature 437 64 67

29. SabetiPCSchaffnerSFFryBLohmuellerJVarillyP 2006 Positive natural selection in the human lineage. Science 312 1614 1620

30. GigerTKhaitovichPSomelMLorencALizanoE 2010 Evolution of neuronal and endothelial transcriptomes in primates. Genome Biol Evol 2 284 292

31. KhaitovichPTangKFranzHKelsoJHellmannI 2006 Positive selection on gene expression in the human brain. Curr Biol 16 R356 R358

32. CáceresMLachuerJZapalaMARedmondJCKudoL 2003 Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci USA 100 13030 13035

33. LinLShenSJiangPSatoSDavidsonBL 2010 Evolution of alternative splicing in primate brain transcriptomes. Hum Mol Genet 19 2958 2973

34. HeinenTJAJStaubachFHamingDTautzD 2009 Emergence of a new gene from an intergenic region. Curr Biol 19 1527 1531

35. McCarreyJRThomasK 1987 Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature 326 501 505

36. LongMLangleyCH 1993 Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260 91 95

37. BetránEThorntonKLongM 2002 Retroposed new genes out of the X in Drosophila. Genome Res 12 1854 1859

38. MarquesACDupanloupIVinckenboschNReymondAKaessmannH 2005 Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3 e357 doi:10.1371/journal.pbio.0030357

39. KleeneKC 2001 A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 106 3 23

40. SiepelA 2009 Darwinian alchemy: Human genes from noncoding DNA. Genome Res 19 1693 1695

41. WangETSandbergRLuoSKhrebtukovaIZhangL 2008 Alternative isoform regulation in human tissue transcriptomes. Nature 456 470 476

42. PanQShaiOLeeLJFreyBJBlencoweBJ 2008 Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40 1413 1415

43. XiongYChenXChenZWangXShiS 2010 RNA sequencing shows no dosage compensation of the active X-chromosome. Nat Genet 42 1043 1047

44. BakewellMAShiPZhangJ 2007 More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci USA 104 7489 7494

45. ThompsonJDHigginsDGGibsonTJ 1994 CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22 4673 4680

46. YangZ 1997 PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13 555 556

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2011 Číslo 11
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#