#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Regulator of G Protein Signaling 3 Modulates Wnt5b Calcium Dynamics and Somite Patterning


Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling.


Vyšlo v časopise: Regulator of G Protein Signaling 3 Modulates Wnt5b Calcium Dynamics and Somite Patterning. PLoS Genet 6(7): e32767. doi:10.1371/journal.pgen.1001020
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001020

Souhrn

Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling.


Zdroje

1. CadiganKM

NusseR

1997 Wnt signaling: a common theme in animal development. Genes Dev 11 3286 305

2. KestlerHA

KuhlM

2008 From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci 363 1333 47

3. WidelitzR

2005 Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23 111 6

4. WillertK

NusseR

1998 Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8 95 102

5. KohnAD

MoonRT

2005 Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38 439 46

6. CadiganKM

LiuYI

2006 Wnt signaling: complexity at the surface. J Cell Sci 119 395 402

7. DaleTC

1998 Signal transduction by the Wnt family of ligands. Biochem J 329(Pt 2) 209 23

8. KuhlM

SheldahlLC

ParkM

MillerJR

MoonRT

2000 The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16 279 83

9. HeisenbergCP

Solnica-KrezelL

2008 Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr Opin Genet Dev 18 311 6

10. SepichDS

MyersDC

ShortR

TopczewskiJ

MarlowF

2000 Role of the zebrafish trilobite locus in gastrulation movements of convergence and extension. Genesis 27 159 73

11. LinF

ChenS

SepichDS

PanizziJR

ClendenonSG

2009 Galpha12/13 regulate epiboly by inhibiting E-cadherin activity and modulating the actin cytoskeleton. J Cell Biol 184 909 21

12. WebbSE

MillerAL

2000 Calcium signalling during zebrafish embryonic development. Bioessays 22 113 23

13. SlusarskiDC

CorcesVG

2000 Calcium imaging in cell-cell signaling. Methods Mol Biol 135 253 61

14. SlusarskiDC

PelegriF

2007 Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol 307 1 13

15. SlusarskiDC

Yang-SnyderJ

BusaWB

MoonRT

1997 Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev Biol 182 114 20

16. FreisingerCM

SchneiderI

WestfallTA

SlusarskiDC

2008 Calcium dynamics integrated into signalling pathways that influence vertebrate axial patterning. Philos Trans R Soc Lond B Biol Sci 363 1377 85

17. SchneiderI

HoustonDW

RebagliatiMR

SlusarskiDC

2008 Calcium fluxes in dorsal forerunner cells antagonize beta-catenin and alter left-right patterning. Development 135 75 84

18. Lyman GingerichJ

WestfallTA

SlusarskiDC

PelegriF

2005 hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Dev Biol 286 427 39

19. ReinhardE

YokoeH

NieblingKR

AllbrittonNL

KuhnMA

1995 Localized calcium signals in early zebrafish development. Dev Biol 170 50 61

20. GillandE

MillerAL

KarplusE

BakerR

WebbSE

1999 Imaging of multicellular large-scale rhythmic calcium waves during zebrafish gastrulation. Proc Natl Acad Sci U S A 96 157 61

21. WebbSE

MillerAL

2003 Imaging intercellular calcium waves during late epiboly in intact zebrafish embryos. Zygote 11 175 82

22. SlusarskiDC

CorcesVG

MoonRT

1997 Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390 410 3

23. WestfallDJ

1997 Managed indemnity insurance–a clear choice for health plan sponsors. Empl Benefits J 22 26 8

24. WestfallTA

BrimeyerR

TwedtJ

GladonJ

OlberdingA

2003 Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol 162 889 98

25. HollowayBA

Gomez de la Torre CannyS

YeY

SlusarskiDC

FreisingerCM

2009 A novel role for MAPKAPK2 in morphogenesis during zebrafish development. PLoS Genet 5 e1000413 doi:10.1371/journal.pgen.1000413

26. WestfallTA

HjertosB

SlusarskiDC

2003 Requirement for intracellular calcium modulation in zebrafish dorsal-ventral patterning. Dev Biol 259 380 91

27. WodarzA

NusseR

1998 Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14 59 88

28. MalbonCC

2004 Frizzleds: new members of the superfamily of G-protein-coupled receptors. Front Biosci 9 1048 58

29. FredrikssonR

LagerstromMC

LundinLG

SchiothHB

2003 The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63 1256 72

30. WangHY

LiuT

MalbonCC

2006 Structure-function analysis of Frizzleds. Cell Signal 18 934 41

31. AhumadaA

SlusarskiDC

LiuX

MoonRT

MalbonCC

2002 Signaling of rat Frizzled-2 through phosphodiesterase and cyclic GMP. Science 298 2006 10

32. KatanaevVL

PonzielliR

SemerivaM

TomlinsonA

2005 Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120 111 22

33. GilmanAG

1987 G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56 615 49

34. RossEM

WilkieTM

2000 GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69 795 827

35. HollingerS

HeplerJR

2002 Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54 527 59

36. De VriesL

ZhengB

FischerT

ElenkoE

FarquharMG

2000 The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40 235 71

37. SiderovskiDP

WillardFS

2005 The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1 51 66

38. WatsonN

LinderME

DrueyKM

KehrlJH

BlumerKJ

1996 RGS family members: GTPase-activating proteins for heterotrimeric G-protein alpha-subunits. Nature 383 172 5

39. HeplerJR

BermanDM

GilmanAG

KozasaT

1997 RGS4 and GAIP are GTPase-activating proteins for Gq alpha and block activation of phospholipase C beta by gamma-thio-GTP-Gq alpha. Proc Natl Acad Sci U S A 94 428 32

40. KozasaT

1998 [Regulation of G protein-mediated signaling pathways by RGS proteins]. Seikagaku 70 1418 22

41. KudohT

TsangM

HukriedeNA

ChenX

DedekianM

2001 A gene expression screen in zebrafish embryogenesis. Genome Res 11 1979 87

42. RauchGJ

HammerschmidtM

BladerP

SchauerteHE

StrahleU

1997 Wnt5 is required for tail formation in the zebrafish embryo. Cold Spring Harb Symp Quant Biol 62 227 34

43. FreisingerCM

HoustonDW

SlusarskiDC

2008 Image analysis of calcium release dynamics. Methods Mol Biol 468 145 56

44. ChangDC

MengC

1995 A Localized Elevation of Cytosolic Free Calcium is Associated with Cytokinesis in the Zebrafish Embryo. The Journal of Cell Biology 131 1539 1545

45. LechleiterJ

GiraS

PeraltaE

ClaphamD

1991 Spiral Calcium Wave Propagation and Annihilation in Xenopus laevis Oocytes. Science 252 123 126

46. SrinivasaSP

WatsonN

OvertonMC

BlumerKJ

1998 Mechanism of RGS4, a GTPase-activating protein for G protein alpha subunits. J Biol Chem 273 1529 33

47. TesmerJJ

BermanDM

GilmanAG

SprangSR

1997 Structure of RGS4 bound to AlF4–activated G(i alpha1): stabilization of the transition state for GTP hydrolysis. Cell 89 251 61

48. NatochinM

McEntafferRL

ArtemyevNO

1998 Mutational analysis of the Asn residue essential for RGS protein binding to G-proteins. J Biol Chem 273 6731 5

49. MorcosPA

2000 Gene switching: analyzing a broad range of mutations using steric block antisense oligonucleotides. Methods Enzymol 313 174 89

50. KimmelCB

BallardWW

KimmelSR

UllmannB

SchillingTF

1995 Stages of embryonic development of the zebrafish. Dev Dyn 203 253 310

51. CretonR

SpeksnijderJE

JaffeLF

1998 Patterns of free calcium in zebrafish embryos. J Cell Sci 111(Pt 12) 1613 22

52. WebbSE

MillerAL

2006 Ca2+ signaling during vertebrate somitogenesis. Acta Pharmacol Sin 27 781 90

53. GaoC

ChenYG

Dishevelled: The hub of Wnt signaling. Cell Signal 22 717 27

54. AngersS

ThorpeCJ

BiecheleTL

GoldenbergSJ

ZhengN

2006 The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8 348 57

55. JungH

KimHJ

LeeSK

KimR

KopachikW

2009 Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med 41 695 706

56. WebbSE

MillerAL

2007 Ca2+ signalling and early embryonic patterning during zebrafish development. Clin Exp Pharmacol Physiol 34 897 904

57. DohlmanHG

ApanieskD

ChenY

SongJ

NusskernD

1995 Inhibition of G-protein signaling by dominant gain-of-function mutations in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol Cell Biol 15 3635 43

58. KoelleMR

HorvitzHR

1996 EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84 115 25

59. LiuT

DeCostanzoAJ

LiuX

WangH

HallaganS

2001 G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science 292 1718 22

60. LiuX

LiuT

SlusarskiDC

Yang-SnyderJ

MalbonCC

1999 Activation of a frizzled-2/beta-adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Galphao and Galphat. Proc Natl Acad Sci U S A 96 14383 8

61. FeiginME

MalbonCC

2007 RGS19 regulates Wnt-beta-catenin signaling through inactivation of Galpha(o). J Cell Sci 120 3404 14

62. WuC

ZengQ

BlumerKJ

MuslinAJ

2000 RGS proteins inhibit Xwnt-8 signaling in Xenopus embryonic development. Development 127 2773 84

63. SchulteG

BryjaV

2007 The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 28 518 25

64. ForceT

WoulfeK

KochWJ

KerkelaR

2007 Molecular scaffolds regulate bidirectional crosstalk between Wnt and classical seven-transmembrane-domain receptor signaling pathways. Sci STKE 2007 pe41

65. CironeP

LinS

GriesbachHL

ZhangY

SlusarskiDC

2008 A role for planar cell polarity signaling in angiogenesis. Angiogenesis

66. ParmaleeNL

KitajewskiJ

2008 Wnt signaling in angiogenesis. Curr Drug Targets 9 558 64

67. ZerlinM

JuliusMA

KitajewskiJ

2008 Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11 63 9

68. AlbigAR

SchiemannWP

2005 Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis: RGS4 inhibits mitogen-activated protein kinases and vascular endothelial growth factor signaling. Mol Biol Cell 16 609 25

69. WesterfieldM

1995 The zebrafish book: a guide for the laboratory use of zebrafish (Danio rerio) (Eugene, OR, M. Westerfield)

70. ThisseC

ThisseB

SchillingTF

PostlethwaitJH

1993 Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119 1203 15

71. LongS

RebagliatiM

2002 Sensitive two-color whole-mount in situ hybridizations using digoxygenin- and dinitrophenol-labeled RNA probes. Biotechniques 32 494, 496, 498 passim

72. ChangDC

MengC

1995 A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol 131 1539 45

73. LechleiterJ

GirardS

PeraltaE

ClaphamD

1991 Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252 123 6

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 7
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#