#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Inactivation of hnRNP K by Expanded Intronic AUUCU Repeat Induces Apoptosis Via Translocation of PKCδ to Mitochondria in Spinocerebellar Ataxia 10


We have identified a large expansion of an ATTCT repeat within intron 9 of ATXN10 on chromosome 22q13.31 as the genetic mutation of spinocerebellar ataxia type 10 (SCA10). Our subsequent studies indicated that neither a gain nor a loss of function of ataxin 10 is likely the major pathogenic mechanism of SCA10. Here, using SCA10 cells, and transfected cells and transgenic mouse brain expressing expanded intronic AUUCU repeats as disease models, we show evidence for a key pathogenic molecular mechanism of SCA10. First, we studied the fate of the mutant repeat RNA by in situ hybridization. A Cy3-(AGAAU)10 riboprobe detected expanded AUUCU repeats aggregated in foci in SCA10 cells. Pull-down and co-immunoprecipitation data suggested that expanded AUUCU repeats within the spliced intronic sequence strongly bind to hnRNP K. Co-localization of hnRNP K and the AUUCU repeat aggregates in the transgenic mouse brain and transfected cells confirmed this interaction. To examine the impact of this interaction on hnRNP K function, we performed RT–PCR analysis of a splicing-regulatory target of hnRNP K, and found diminished hnRNP K activity in SCA10 cells. Cells expressing expanded AUUCU repeats underwent apoptosis, which accompanied massive translocation of PKCδ to mitochondria and activation of caspase 3. Importantly, siRNA–mediated hnRNP K deficiency also caused the same apoptotic event in otherwise normal cells, and over-expression of hnRNP K rescued cells expressing expanded AUUCU repeats from apoptosis, suggesting that the loss of function of hnRNP K plays a key role in cell death of SCA10. These results suggest that the expanded AUUCU–repeat in the intronic RNA undergoes normal transcription and splicing, but causes apoptosis via an activation cascade involving a loss of hnRNP K activities, massive translocation of PKCδ to mitochondria, and caspase 3 activation.


Vyšlo v časopise: Inactivation of hnRNP K by Expanded Intronic AUUCU Repeat Induces Apoptosis Via Translocation of PKCδ to Mitochondria in Spinocerebellar Ataxia 10. PLoS Genet 6(6): e32767. doi:10.1371/journal.pgen.1000984
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000984

Souhrn

We have identified a large expansion of an ATTCT repeat within intron 9 of ATXN10 on chromosome 22q13.31 as the genetic mutation of spinocerebellar ataxia type 10 (SCA10). Our subsequent studies indicated that neither a gain nor a loss of function of ataxin 10 is likely the major pathogenic mechanism of SCA10. Here, using SCA10 cells, and transfected cells and transgenic mouse brain expressing expanded intronic AUUCU repeats as disease models, we show evidence for a key pathogenic molecular mechanism of SCA10. First, we studied the fate of the mutant repeat RNA by in situ hybridization. A Cy3-(AGAAU)10 riboprobe detected expanded AUUCU repeats aggregated in foci in SCA10 cells. Pull-down and co-immunoprecipitation data suggested that expanded AUUCU repeats within the spliced intronic sequence strongly bind to hnRNP K. Co-localization of hnRNP K and the AUUCU repeat aggregates in the transgenic mouse brain and transfected cells confirmed this interaction. To examine the impact of this interaction on hnRNP K function, we performed RT–PCR analysis of a splicing-regulatory target of hnRNP K, and found diminished hnRNP K activity in SCA10 cells. Cells expressing expanded AUUCU repeats underwent apoptosis, which accompanied massive translocation of PKCδ to mitochondria and activation of caspase 3. Importantly, siRNA–mediated hnRNP K deficiency also caused the same apoptotic event in otherwise normal cells, and over-expression of hnRNP K rescued cells expressing expanded AUUCU repeats from apoptosis, suggesting that the loss of function of hnRNP K plays a key role in cell death of SCA10. These results suggest that the expanded AUUCU–repeat in the intronic RNA undergoes normal transcription and splicing, but causes apoptosis via an activation cascade involving a loss of hnRNP K activities, massive translocation of PKCδ to mitochondria, and caspase 3 activation.


Zdroje

1. LinX

AshizawaT

2003 SCA10 and ATTCT repeat expansion: clinical features and molecular aspects. Cytogenet Genome Res 100 184 188

2. AshizawaT

2006 Spinocerebellar ataxia type 10: a disease caused by an expanded (ATTCT)n pentanucleotide repeat.

WellsRD

AshizawaT

Genetic instabilities and neurological diseases Burlington Academic Press 433 446

3. RasmussenA

MatsuuraT

RuanoL

YescasP

OchoaA

2001 Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 50 234 239

4. TeiveHA

RoaBB

RaskinS

FangP

ArrudaWO

2004 Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology 63 1509 1512

5. GrewalRP

AchariM

MatsuuraT

DurazoA

TayagE

2002 Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol 59 1285 1290

6. MatsuuraT

YamagataT

BurgessDL

RasmussenA

GrewalRP

2000 Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 26 191 194

7. GatchelJR

ZoghbiHY

2005 Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6 743 755

8. BrounerJR

WillemsenR

OostraBA

2009 Microsatellite repeat instability and neurological disease. Bioessays 31 71 83

9. PandolfoM

2008 Friedreich ataxia. Arch Neurol 65 1296 1303

10. SatoN

AminoT

KobayashiK

AsakawaS

IshiguroT

2009 Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85 544 557

11. LiquoriCL

RickerK

MoseleyML

JacobsenJF

KressW

2001 Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293 864 867

12. MankodiA

Teng-UmnuayP

KrymM

HendersonD

SwansonM

2003 Ribonuclear inclusions in skeletal muscle in myotonic dystrophy types 1 and 2. Ann Neurol 54 760 768

13. MatsuuraT

FangP

PearsonCE

JayakarP

AshizawaT

2006 Interruptions in the expanded ATTCT repeat of spinocerebellar ataxia type 10: repeat purity as a disease modifier? Am J Hum Genet 78 125 129

14. RaskinS

AshizawaT

TeiveHA

ArrudaWO

FangP

2007 Reduced penetrance in a Brazilian family with Spinocerebellar Ataxia Type 10. Arch Neurol 64 591 594

15. MarzP

ProbstA

LangS

SchwagerM

Rose-JohnS

2004 Ataxin-10, the spinocerebellar ataxia type 10 neurodegenerative disorder protein, is essential for survival of cerebellar neurons. J Biol Chem 279 35542 35550

16. Waragai

NagamitsuM

XuS

LiW

LinYJ

2006 Ataxin 10 induces neuritogenesis via interaction with G-protein beta2 subunit. J Neurosci Res 83 1170 1178

17. WakamiyaM

LiuY

SchusterGC

GaoR

XuW

2006 The role of ataxin-10 in spinocerebellar ataxia type 10 pathogenesis. Neurology 67 607 613

18. KerenB

JacquetteA

DepienneC

LeiteP

DurrA

2010 Evidence against haploinsufficiency of human ataxin 10 as a cause of spinocerebellar ataxia type 10. Neurogenetics 11 273 274

19. ThistedT

LyakhovDL

LiebhaberSA

2001 Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL, suggest distinct modes of RNA recognition. J Biol Chem 276 17484 17496

20. TsukaharaT

CasciatoC

HelfmanDM

1994 Alternative splicing of β-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 5′ and 3′ splice sites of the non-muscle/smooth muscle exon 6. Nucl Acids Res 22 2318 2325

21. Expert-BezanconA

Le CaerJP

MarieJ

2002 hnRNP K is a component of an intronic splicing enhancer complex that activates the splicing of the alternative exon 6A from chicken β-tropomyosin pre mRNA. J Biol Chem 277 16614 16623

22. LynchM

ChenL

RavitzMJ

MehtaniS

KorenblatK

2005 hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic transformation. Mol Cell Biol 25 6436 6453

23. MoumenA

MastersonP

O'ConnorMJ

JacksonSP

2005 hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123 1065 1078

24. SchulleryDS

OstrowskiJ

DenisenkoON

StempkaL

ShnyrevaM

1999 Regulated interaction of protein kinase C delta with the heterogeneous nuclear ribonucleoprotein K protein. J Biol Chem 274 15101 15109

25. BomsztykK

DenisenkoO

OstrowskiJ

2004 hnRNP K: one protein multiple processes. Bioessays 26 629 638

26. IdrissH

KumarA

Casas-FinetJR

GuoH

DamuniZ

1994 Regulation of in vitro nucleic acid strand annealing activity of heterogeneous nuclear ribonucleoprotein protein A1 by reversible phosphorylation. Biochemistry 33 11382 11390

27. OstrowskiJ

Klimek-TomczakK

WyrwiczLS

MikulaM

SchulleryDS

2004 Heterogeneous nuclear ribonucleoprotein K enhances insulin-induced expression of mitochondrial UCP2 protein. J Biol Chem 279 54599 54609

28. KaasinenSK

GoldsteinG

AlhonemL

JanneJ

KoistinahoJ

2002 Induction and activation of protein kinase δ in Hippocampus and Cortex after kainic acid treatment, Exp Neurol 176 203 212

29. NittiM

FurtaroAL

TraversoN

OdettiP

StoraceD

2007 PKC delta and NADPH oxidase in AGE-induced neuronal death. Neurosci Lett 416 261 265

30. VossOH

KimS

WewersMD

DoseffAI

2005 Regulation of monocyte apoptosis by the protein kinase Cdelta-dependent phosphorylation of caspase-3. J Biol Chem 280 17371 17379

31. BrodieC

BlumbergPM

2003 Regulation of cell apoptosis by protein kinase c delta. Apoptosis 8 19 27

32. MajumderPK

PandeyP

SunX

ChengK

DattaR

2000 Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem 275 21793 21796

33. DaughtersRS

TuttleDL

GaoW

IkedaY

MoseleyML

2009 RNA gain-of-function in spinocerebellar ataxia type 8. PLoS Genet 5 e1000600 doi:10.1371/journal.pgen.1000600

34. RudnickiDD

HolmesSE

LinMW

ThorntonCA

RossCA

2007 Huntington's disease–like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 61 272 82

35. OostraBA

WillemsenR

2009 FMR1: a gene with three faces. Biochim Biophys Acta 1790 467 77

36. GaoFH

WuYL

ZhaoM

LiuCX

WangLS

2009 Protein Kinase C-delta mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: Involvement in apoptosis induction. Exp Cell Res 315 3250 3258

37. JellingerKA

StadelmannCH

2000 The enigma of cell death in neurodegenerative disorders. J Neural Transm Suppl 60 21 36

38. SumitomoM

OhbaM

AsakumaJ

AsanoT

KurokiT

2002 Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 109 827 836

39. SarkarPS

ChangHC

BoudiFB

ReddyS

1998 CTG repeats show bimodal amplification in E. coli Cell 95 531 540

40. MatsuuraT

AshizawaT

2002 Polymerase chain reaction amplification of expanded ATTCT repeat in spinocerebellar ataxia type 10. Ann Neurol 51 271 272

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#