#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1


The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.


Vyšlo v časopise: FACT Prevents the Accumulation of Free Histones Evicted from Transcribed Chromatin and a Subsequent Cell Cycle Delay in G1. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000964
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000964

Souhrn

The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA–damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.


Zdroje

1. ReinbergD

SimsRJ3rd

2006 de FACTo nucleosome dynamics. J Biol Chem 281 23297 23301

2. FormosaT

2008 FACT and the reorganized nucleosome. Mol Biosyst 4 1085 1093

3. OrphanidesG

LeRoyG

ChangCH

LuseDS

ReinbergD

1998 FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92 105 116

4. PavriR

ZhuB

LiG

TrojerP

MandalS

2006 Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 125 703 717

5. Jimeno-GonzalezS

Gomez-HerrerosF

AlepuzPM

ChavezS

2006 A gene-specific requirement for FACT during transcription is related to the chromatin organization of the transcribed region. Mol Cell Biol 26 8710 8721

6. BiswasD

Dutta-BiswasR

MitraD

ShibataY

StrahlBD

2006 Opposing roles for Set2 and yFACT in regulating TBP binding at promoters. Embo J 25 4479 4489

7. FormosaT

2003 Changing the DNA landscape: putting a SPN on chromatin. Curr Top Microbiol Immunol 274 171 201

8. LindstromDL

SquazzoSL

MusterN

BurckinTA

WachterKC

2003 Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23 1368 1378

9. MasonPB

StruhlK

2003 The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol Cell Biol 23 8323 8333

10. SaundersA

WernerJ

AndrulisED

NakayamaT

HiroseS

2003 Tracking FACT and the RNA polymerase II elongation complex through chromatin in vivo. Science 301 1094 1096

11. BiswasD

Dutta-BiswasR

StillmanDJ

2007 Chd1 and yFACT act in opposition in regulating transcription. Mol Cell Biol 27 6279 6287

12. BiswasD

YuY

PrallM

FormosaT

StillmanDJ

2005 The Yeast FACT Complex Has a Role in Transcriptional Initiation. Mol Cell Biol 25 5812 5822

13. O'DonnellAF

BrewsterNK

KurniawanJ

MinardLV

JohnstonGC

2004 Domain organization of the yeast histone chaperone FACT: the conserved N-terminal domain of FACT subunit Spt16 mediates recovery from replication stress. Nucleic Acids Res 32 5894 5906

14. SchlesingerMB

FormosaT

2000 POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155 1593 1606

15. VanDemarkAP

BlanksmaM

FerrisE

HerouxA

HillCP

2006 The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22 363 374

16. OrphanidesG

WuWH

LaneWS

HampseyM

ReinbergD

1999 The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400 284 288

17. PrendergastJA

MurrayLE

RowleyA

CarruthersDR

SingerRA

1990 Size selection identifies new genes that regulate Saccharomyces cerevisiae cell proliferation. Genetics 124 81 90

18. LycanD

MikesellG

BungerM

BreedenL

1994 Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae. Mol Cell Biol 14 7455 7465

19. MaloneEA

ClarkCD

ChiangA

WinstonF

1991 Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol Cell Biol 11 5710 5717

20. JohnS

HoweL

TafrovST

GrantPA

SternglanzR

2000 The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14 1196 1208

21. KroganNJ

KimM

AhnSH

ZhongG

KoborMS

2002 RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22 6979 6992

22. SquazzoSL

CostaPJ

LindstromDL

KumerKE

SimicR

2002 The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. Embo J 21 1764 1774

23. FlemingAB

KaoCF

HillyerC

PikaartM

OsleyMA

2008 H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31 57 66

24. FormosaT

ErikssonP

WittmeyerJ

GinnJ

YuY

2001 Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. Embo J 20 3506 3517

25. RhoadesAR

RuoneS

FormosaT

2004 Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Mol Cell Biol 24 3907 3917

26. XinH

TakahataS

BlanksmaM

McCulloughL

StillmanDJ

2009 yFACT Induces Global Accesibility of Nucleosomal DNA without H2A–H2B Displacement. Molecular Cell 35 365 376

27. StuweT

HothornM

LejeuneE

RybinV

BortfeldM

2008 The FACT Spt16 “peptidase” domain is a histone H3–H4 binding module. Proc Natl Acad Sci U S A 105 8884 8889

28. VanDemarkAP

XinH

McCulloughL

RawlinsR

BentleyS

2008 Structural and functional analysis of the Spt16p N-terminal domain reveals overlapping roles of yFACT subunits. J Biol Chem 283 5058 5068

29. BelotserkovskayaR

SaundersA

LisJT

ReinbergD

2004 Transcription through chromatin: understanding a complex FACT. Biochim Biophys Acta 1677 87 99

30. FormosaT

RuoneS

AdamsMD

OlsenAE

ErikssonP

2002 Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162 1557 1571

31. KaplanCD

LapradeL

WinstonF

2003 Transcription elongation factors repress transcription initiation from cryptic sites. Science 301 1096 1099

32. CheungV

ChuaG

BatadaNN

LandryCR

MichnickSW

2008 Chromatin- and transcription-related factors repress transcription from within coding regions throughout the Saccharomyces cerevisiae genome. PLoS Biol 6 e277 doi:10.1371/journal.pbio.0060277

33. VantiM

GallasteguiE

RespaldizaI

Rodriguez-GilA

Gomez-HerrerosF

2009 Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription. PLoS Genet 5 e1000339 doi:10.1371/journal.pgen.1000339

34. JamaiA

PuglisiA

StrubinM

2009 Histone Chaperone Spt16 Promotes Redeposition of the Original H3–H4 Histones Evicted by Elongating RNA Polymerase. Molecular Cell 35 377 383

35. RowleyA

SingerRA

JohnstonGC

1991 CDC68, a yeast gene that affects regulation of cell proliferation and transcription, encodes a protein with a highly acidic carboxyl terminus. Mol Cell Biol 11 5718 5726

36. XuQ

JohnstonGC

SingerRA

1993 The Saccharomyces cerevisiae Cdc68 transcription activator is antagonized by San1, a protein implicated in transcriptional silencing. Mol Cell Biol 13 7553 7565

37. SkotheimJM

Di TaliaS

SiggiaED

CrossFR

2008 Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 454 291 296

38. DirickL

BohmT

NasmythK

1995 Roles and regulation of Cln-Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. Embo J 14 4803 4813

39. KochC

SchleifferA

AmmererG

NasmythK

1996 Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at start, whereas Clb/Cdc28 kinases displace it from the promoter in G2. Genes Dev 10 129 141

40. StuartD

WittenbergC

1995 CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev 9 2780 2794

41. TyersM

TokiwaG

FutcherB

1993 Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. Embo J 12 1955 1968

42. WangH

CareyLB

CaiY

WijnenH

FutcherB

2009 Recruitment of Cln3 cyclin to promoters controls cell cycle entry via histone deacetylase and other targets. PLoS Biol 7 e1000189 doi:10.1371/journal.pbio.1000189

43. CostanzoM

NishikawaJL

TangX

MillmanJS

SchubO

2004 CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117 899 913

44. de BruinRA

McDonaldWH

KalashnikovaTI

YatesJ3rd

WittenbergC

2004 Cln3 activates G1-specific transcription via phosphorylation of the SBF bound repressor Whi5. Cell 117 887 898

45. TakahataS

YuY

StillmanDJ

2009 The E2F functional analogue SBF recruits the Rpd3(L) HDAC, via Whi5 and Stb1, and the FACT chromatin reorganizer, to yeast G1 cyclin promoters. Embo J 28 3378 3389

46. SchneiderBL

YangQH

FutcherAB

1996 Linkage of replication to start by the Cdk inhibitor Sic1. Science 272 560 562

47. SchwobE

BohmT

MendenhallMD

NasmythK

1994 The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79 233 244

48. GunjanA

PaikJ

VerreaultA

2005 Regulation of histone synthesis and nucleosome assembly. Biochimie 87 625 635

49. GunjanA

VerreaultA

2003 A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115 537 549

50. SinghRK

KabbajMH

PaikJ

GunjanA

2009 Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11 925 933

51. SinghRK

PaikJ

GunjanA

2009 Generation and management of excess histones during the cell cycle. Front Biosci 14 3145 3158

52. ChavezS

AguileraA

1997 The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev 11 3459 3470

53. LunaR

JimenoS

MarinM

HuertasP

Garcia-RubioM

2005 Interdependence between transcription and mRNP processing and export, and its impact on genetic stability. Mol Cell 18 711 722

54. NouraniA

RobertF

WinstonF

2006 Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae. Mol Cell Biol 26 1496 1509

55. GeraldJN

BenjaminJM

KronSJ

2002 Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair. J Cell Sci 115 1749 1757

56. TohGW

LowndesNF

2003 Role of the Saccharomyces cerevisiae Rad9 protein in sensing and responding to DNA damage. Biochem Soc Trans 31 242 246

57. PellicioliA

FoianiM

2005 Signal transduction: how rad53 kinase is activated. Curr Biol 15 R769 771

58. AllenJB

ZhouZ

SiedeW

FriedbergEC

ElledgeSJ

1994 The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev 8 2401 2415

59. LibudaDE

WinstonF

2006 Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443 1003 1007

60. OsleyMA

1991 The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60 827 861

61. BortvinA

WinstonF

1996 Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272 1473 1476

62. Meeks-WagnerD

HartwellLH

1986 Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44 43 52

63. De KoningL

CorpetA

HaberJE

AlmouzniG

2007 Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14 997 1007

64. SantistebanMS

ArentsG

MoudrianakisEN

SmithMM

1997 Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. Embo J 16 2493 2506

65. GrothA

CorpetA

CookAJ

RocheD

BartekJ

2007 Regulation of replication fork progression through histone supply and demand. Science 318 1928 1931

66. GreenEM

AntczakAJ

BaileyAO

FrancoAA

WuKJ

2005 Replication-independent histone deposition by the HIR complex and Asf1. Curr Biol 15 2044 2049

67. SchwabishMA

StruhlK

2006 Asf1 mediates histone eviction and deposition during elongation by RNA polymerase II. Mol Cell 22 415 422

68. AndrewsAJ

ChenX

ZevinA

StargellLA

LugerK

2010 The histone chaperone Nap1 promotes nucleosome assembly by eliminating nonnucleosomal histone DNA interactions. Mol Cell 26 834 842

69. GallegoC

GariE

ColominaN

HerreroE

AldeaM

1997 The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast. Embo J 16 7196 7206

70. LaabsTL

MarkwardtDD

SlatteryMG

NewcombLL

StillmanDJ

2003 ACE2 is required for daughter cell-specific G1 delay in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 100 10275 10280

71. Di TaliaS

WangH

SkotheimJM

RosebrockAP

FutcherB

2009 Daughter-specific transcription factors regulate cell size control in budding yeast. PLoS Biol 7 e1000221 doi:10.1371/journal.pbio.1000221

72. NewcombLL

HallDD

HeidemanW

2002 AZF1 is a glucose-dependent positive regulator of CLN3 transcription in Saccharomyces cerevisiae. Mol Cell Biol 22 1607 1614

73. MaiB

MilesS

BreedenLL

2002 Characterization of the ECB binding complex responsible for the M/G(1)-specific transcription of CLN3 and SWI4. Mol Cell Biol 22 430 441

74. PramilaT

MilesS

GuhaThakurtaD

JemioloD

BreedenLL

2002 Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev 16 3034 3045

75. LiY

ZengSX

LandaisI

LuH

2007 Human SSRP1 has Spt16-dependent and -independent roles in gene transcription. J Biol Chem 282 6936 6945

76. RoseMD

WinstonF

HieterP

1990 Methods in Yeast Genetics: A Laboratory Course Manual Cold Spring Harbor, NY Cold Sprong Harbor Laboratory Press

77. WineyM

GoetschL

BaumP

ByersB

1991 MPS1 and MPS2: novel yeast genes defining distinct steps of spindle pole body duplication. J Cell Biol 114 745 754

78. PelechanoV

Jimeno-GonzalezS

Rodriguez-GilA

Garcia-MartinezJ

Perez-OrtinJE

2009 Regulon-specific control of transcription elongation across the yeast genome. PLoS Genet 5 e1000614 doi:10.1371/journal.pgen.1000614

79. Miyaji-YamaguchiM

KatoK

NakanoR

AkashiT

KikuchiA

2003 Involvement of nucleocytoplasmic shuttling of yeast Nap1 in mitotic progression. Mol Cell Biol 23 6672 6684

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#