#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci


Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits.


Vyšlo v časopise: Digital Quantification of Human Eye Color Highlights Genetic Association of Three New Loci. PLoS Genet 6(5): e32767. doi:10.1371/journal.pgen.1000934
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1000934

Souhrn

Previous studies have successfully identified genetic variants in several genes associated with human iris (eye) color; however, they all used simplified categorical trait information. Here, we quantified continuous eye color variation into hue and saturation values using high-resolution digital full-eye photographs and conducted a genome-wide association study on 5,951 Dutch Europeans from the Rotterdam Study. Three new regions, 1q42.3, 17q25.3, and 21q22.13, were highlighted meeting the criterion for genome-wide statistically significant association. The latter two loci were replicated in 2,261 individuals from the UK and in 1,282 from Australia. The LYST gene at 1q42.3 and the DSCR9 gene at 21q22.13 serve as promising functional candidates. A model for predicting quantitative eye colors explained over 50% of trait variance in the Rotterdam Study. Over all our data exemplify that fine phenotyping is a useful strategy for finding genes involved in human complex traits.


Zdroje

1. SturmRA

LarssonM

2009 Genetics of human iris colour and patterns. Pigment Cell Melanoma Res 22 544 562

2. ParraEJ

2007 Human pigmentation variation: evolution, genetic basis, and implications for public health. Am J Phys Anthropol Suppl 45 85 105

3. FrostP

2007 Human skin-color sexual dimorphism: a test of the sexual selection hypothesis. Am J Phys Anthropol 133 779 780; author reply 780–771; Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, et al. (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460: 213–217

4. SulemP

GudbjartssonDF

StaceySN

HelgasonA

RafnarT

2008 Two newly identified genetic determinants of pigmentation in Europeans. Nat Genet 40 835 837

5. SulemP

GudbjartssonDF

StaceySN

HelgasonA

RafnarT

2007 Genetic determinants of hair, eye and skin pigmentation in Europeans. Nat Genet 39 1443 1452

6. KayserM

LiuF

JanssensAC

RivadeneiraF

LaoO

2008 Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene. Am J Hum Genet 82 411 423

7. HanJ

KraftP

NanH

GuoQ

ChenC

2008 A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet 4 e1000074 doi:10.1371/journal.pgen.1000074

8. LiuF

van DuijnK

VingerlingJR

HofmanA

UitterlindenAG

2009 Eye color and the prediction of complex phenotypes from genotypes. Curr Biol 19 R192 193

9. KayserM

SchneiderPM

2009 DNA-based prediction of human externally visible characteristics in forensics: motivations, scientific challenges, and ethical considerations. Forensic Sci Int Genet 3 154 161

10. WalshS

LiuF

BallantyneK

van OvenM

LaoO

2010 IrisPlex: a sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Science Internatinal: Genetics in press

11. SturmRA

DuffyDL

ZhaoZZ

LeiteFP

StarkMS

2008 A single SNP in an evolutionary conserved region within intron 86 of the HERC2 gene determines human blue-brown eye color. Am J Hum Genet 82 424 431

12. DuffyDL

MontgomeryGW

ChenW

ZhaoZZ

LeL

2007 A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. Am J Hum Genet 80 241 252

13. BruesAM

1975 Rethingking human pigmentation. Am J Phys Anthropol 43 387 391

14. EibergH

TroelsenJ

NielsenM

MikkelsenA

Mengel-FromJ

2008 Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression. Hum Genet 123 177 187

15. BonillaC

BoxillLA

DonaldSA

WilliamsT

SylvesterN

2005 The 8818G allele of the agouti signaling protein (ASIP) gene is ancestral and is associated with darker skin color in African Americans. Hum Genet 116 402 406

16. KaplanJ

De DomenicoI

WardDM

2008 Chediak-Higashi syndrome. Curr Opin Hematol 15 22 29; Challa P (2009) Genetics of pseudoexfoliation syndrome. Curr Opin Ophthalmol 20: 88–91

17. TrantowCM

MaoM

PetersenGE

AlwardEM

AlwardWL

2009 Lyst mutation in mice recapitulates iris defects of human exfoliation syndrome. Invest Ophthalmol Vis Sci 50 1205 1214

18. Gutierrez-GilB

WienerP

WilliamsJL

2007 Genetic effects on coat colour in cattle: dilution of eumelanin and phaeomelanin pigments in an F2-Backcross Charolais x Holstein population. BMC Genet 8 56

19. IzagirreN

GarciaI

JunqueraC

de la RuaC

AlonsoS

2006 A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol Biol Evol 23 1697 1706; McEvoy B, Beleza S, Shriver MD (2006) The genetic architecture of normal variation in human pigmentation: an evolutionary perspective and model.Hum Mol Genet 15 Spec No 2: R176–181

20. TuntivanichN

PittlerSJ

FischerAJ

OmarG

KiupelM

2009 Characterization of a canine model of autosomal recessive retinitis pigmentosa due to a PDE6A mutation. Invest Ophthalmol Vis Sci 50 801 813

21. PattersonD

2009 Molecular genetic analysis of Down syndrome. Hum Genet 126 195 214

22. SaenzRB

1999 Primary care of infants and young children with Down syndrome. Am Fam Physician 59 381 390, 392, 395–386

23. KimJH

HwangJM

KimHJ

YuYS

2002 Characteristic ocular findings in Asian children with Down syndrome. Eye 16 710 714

24. TakamatsuK

MaekawaK

TogashiT

ChoiDK

SuzukiY

2002 Identification of two novel primate-specific genes in DSCR. DNA Res 9 89 97

25. LarssonM

PedersenNL

StattinH

2003 Importance of genetic effects for characteristics of the human iris. Twin Res 6 192 200

26. Mercke OdebergJ

AndradeJ

HolmbergK

HoglundP

MalmqvistU

2006 UGT1A polymorphisms in a Swedish cohort and a human diversity panel, and the relation to bilirubin plasma levels in males and females. Eur J Clin Pharmacol 62 829 837

27. StrassburgCP

2008 Pharmacogenetics of Gilbert's syndrome. Pharmacogenomics 9 703 715; Burchell B, Hume R (1999) Molecular genetic basis of Gilbert's syndrome. J Gastroenterol Hepatol 14: 960–966; Watson KJ, Gollan JL (1989) Gilbert's syndrome. Baillieres Clin Gastroenterol 3: 337–355

28. MaherB

2008 Personal genomes: The case of the missing heritability. Nature 456 18 21

29. HofmanA

GrobbeeDE

de JongPT

van den OuwelandFA

1991 Determinants of disease and disability in the elderly: the Rotterdam Elderly Study. Eur J Epidemiol 7 403 422

30. HofmanA

BretelerMM

van DuijnCM

KrestinGP

PolsHA

2007 The Rotterdam Study: objectives and design update. Eur J Epidemiol 22 819 829

31. HofmanA

BretelerMM

van DuijnCM

JanssenHL

KrestinGP

2009 The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 24 553 572

32. ZhuG

MontgomeryGW

JamesMR

TrentJM

HaywardNK

2007 A genome-wide scan for naevus count: linkage to CDKN2A and to other chromosome regions. Eur J Hum Genet 15 94 102; Falchi M, Bataille V, Hayward NK, Duffy DL, Bishop JA, et al. (2009) Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat Genet 41: 915–919

33. Newton-ChehC

EijgelsheimM

RiceKM

de BakkerPI

YinX

2009 Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 41 399 406

34. EstradaK

KrawczakM

SchreiberS

van DuijnK

StolkL

2009 A genome-wide association study of northwestern Europeans involves the C-type natriuretic peptide signaling pathway in the etiology of human height variation. Hum Mol Genet 18 3516 3524

35. LiY

WillerC

SannaS

AbecasisG

2009 Genotype imputation. Annu Rev Genomics Hum Genet 10 387 406

36. ZhaiG

van MeursJB

LivshitsG

MeulenbeltI

ValdesAM

2009 A genome-wide association study suggests that a locus within the ataxin 2 binding protein 1 gene is associated with hand osteoarthritis: the Treat-OA consortium. J Med Genet 46 614 616

37. ZhaoZZ

NyholtDR

LeL

MartinNG

JamesMR

2006 KRAS variation and risk of endometriosis. Mol Hum Reprod 12 671 676

38. AulchenkoYS

RipkeS

IsaacsA

van DuijnCM

2007 GenABEL: an R library for genome-wide association analysis. Bioinformatics 23 1294 1296

39. PurcellS

NealeB

Todd-BrownK

ThomasL

FerreiraMA

2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81 559 575

40. BarrettJC

FryB

MallerJ

DalyMJ

2005 Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21 263 265

41. AbecasisGR

ChernySS

CooksonWO

CardonLR

2002 Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30 97 101

42. AkaikeH

1974 A new look at the statistical model identification. IEEE Trans Automat Contr 19 716 723

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 5
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#