#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

EFFECT OF STERILIZATION ON MECHANICAL PROPERTIES OF COLLAGEN-BASED COMPOSITE TUBES


In this study, composite tubes wer manufactured from biological collagenous matrix and reinforcing polyester mesh. The effect of sterilization on mechanical properties of this structure was evaluated using inflation-extension tests. Samples were exposed to two types of sterilization (ethylene oxide and gamma irradiation). The control (non-sterilized) samples were also tested. The closed thick walled tube model was used in order to compute stresses within sterilized and control specimens. It was found that the process of sterilization (especially irradiation) dramatically affects the final mechanical properties of the material. These findings should be taken into account when such collagenous material is assumed to be used in tissue engineering.

Keywords:
biological composite, sterilization, ethylene oxide, gamma irradiation, collagen


Autoři: Jan Vesely 1;  Hynek Chlup 1;  Tomas Grus 2;  Rudolf Zitny 1
Působiště autorů: Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic 1;  General University Hospital in Prague, Czech Republic 2
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2017, 47, 15-18
Kategorie: Původní práce

Souhrn

In this study, composite tubes wer manufactured from biological collagenous matrix and reinforcing polyester mesh. The effect of sterilization on mechanical properties of this structure was evaluated using inflation-extension tests. Samples were exposed to two types of sterilization (ethylene oxide and gamma irradiation). The control (non-sterilized) samples were also tested. The closed thick walled tube model was used in order to compute stresses within sterilized and control specimens. It was found that the process of sterilization (especially irradiation) dramatically affects the final mechanical properties of the material. These findings should be taken into account when such collagenous material is assumed to be used in tissue engineering.

Keywords:
biological composite, sterilization, ethylene oxide, gamma irradiation, collagen


Zdroje

[1] Prabhuram, T., Somurajan, V., Prabhakaran, S.: Hybrid composite materials, in proc.: Proceedings of the International Conference on Frontiers in Automobile and Mechanical Engineering (FAME 2010), Institute of Electrical and Electronics Engineers, Chennai, India, November 25-27, 2010.

[2] Kannana, R.Y., Salacinskia, H.J., Salesa, K., Butlerb, P., Seifalian, A.M.: The roles of tissue engineering and vascularization in the development of microvascular networks: A review. Biomaterials, 2005, vol. 26, no. 14, p. 1857–1233.

[3] Giusti, P., Lazzeri, L., De Petris, S., Palla, M., Cascone, M.G.: Collagen-based new bioartificial polymeric materials. Biomaterials, 1994, vol. 15, no. 15, p. 1229–1233.

[4] Noah, E.M., Chen, J., Jiao, X., Heschel, I., Pallua, N.: Impact of sterilization on the porous design and cell behavior in collagen sponges prepared for tissue engineering. Biomaterials, 2002, vol. 23, no. 14, p. 2855–2861.

[5] Olde Damink, L.H., Dijkstra, P.J., Van Luyn, M.J., Van Wachem, P.B., Nieuwenhuis, P., Feijen, J.: Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen. Journal of Biomedical Materials Research, 1995, vol. 29, no. 2, p. 149–155.

[6] Cheung, D.T., Perelman, N., Tong, D., Nimni, M.E.: The effect of gamma-irradiation on collagen molecules, isolated alphachains, and crosslinked native fibers. Journal of Biomedical Materials Research, 1990, vol. 24, no. 5, p. 581–589.

[7] Liu, B.C., Harrell, R., Davis, R.H., Dresden, M.H., Spira, M.: The effect of gamma irradiation on injectable human amnion collagen. Journal of Biomedical Materials Research, 1989, vol. 23, no. 8, p. 833–844.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#