#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

USING PVDF FILMS AS FLEXIBLE PIEZOELECTRIC GENERATORS FOR BIOMECHANICAL ENERGY HARVESTING


In this paper, a commercial polymeric piezoelectric film, the polyvinylidene fluoride (PVDF) was used to harvest electrical energy during the execution of five locomotion activities (walking, going down and up the stairs, jogging and running). The PVDF film transducer was placed into a tight suit in proximity of four body joints (shoulder, elbow, knee and ankle). The RMS values of the power output measured during the five activities were in the range 0.1 – 10 µW depending on the position of the film transducer on the body. This amount of electrical power allows increasing the operation time of wearable systems, and it may be used to prolong the monitoring of human vital signals for personalized health, wellness, and safety applications.

Keywords:
human body, daily activities, elastic fabric, nanogenerators


Autoři: Antonino Proto 1,2;  Karel Vlach 2;  Silvia Conforto 1;  Vladimir Kasik 2;  Daniele Bibbo 1;  David Vala 2;  Ivan Bernabucci 1;  Marek Penhaker 2;  Maurizio Schmid 1
Působiště autorů: Department of Engineering, University of Roma Tre, Rome, Italy 1;  Department of Cybernetics and Biomedical Engineering, VSB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic 2
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2017, 47, 5-10
Kategorie: Původní práce

Souhrn

In this paper, a commercial polymeric piezoelectric film, the polyvinylidene fluoride (PVDF) was used to harvest electrical energy during the execution of five locomotion activities (walking, going down and up the stairs, jogging and running). The PVDF film transducer was placed into a tight suit in proximity of four body joints (shoulder, elbow, knee and ankle). The RMS values of the power output measured during the five activities were in the range 0.1 – 10 µW depending on the position of the film transducer on the body. This amount of electrical power allows increasing the operation time of wearable systems, and it may be used to prolong the monitoring of human vital signals for personalized health, wellness, and safety applications.

Keywords:
human body, daily activities, elastic fabric, nanogenerators


Zdroje

[1] Bonato, P.: Wearable Sensors and Systems From Enabling Technology to Clinical Applications. Ieee Engineering in Medicine and Biology Magazine, vol. 29, no. 3, 2010, p. 25–36.

[2] Vavrinský, E., et al. Document Monitoring of EMG to force ratio using new designed precise wireless sensor system. Lékař a Technika, vol. 44, no. 3, 2014, p. 17–22.

[3] Jagelka, M., et al. Implementation of pulse oximetry measurement to wireless biosignals probe. Lékař a Technika, vol. 44, no. 3, 2014, p 37–40.

[4] Jagelka, M., et al. Preliminary testing of flexible electrodes for biosignal measurement: abrasion resistance. Lékař a Technika, vol. 45, no. 1, 2015, p. 16–20.

[5] Proto, A., et al. Wearable PVDF transducer for biomechanical energy harvesting and gait cycle detection. Proceedings of IEEE EMBS Biomedical Engineering and Sciences Conference, 2016, p. 62–66.

[6] Fida, B., et al. The effect of window length on the classification of dynamic activities through a single accelerometer. Proceedings of the IASTED International Conference Biomedical Engineering, vol. 2325, 2014, p. 123–127.

[7] Karchňák, J., et al. Utilizing of mems sensors in rehabilitation process. Lékař a Technika, vol. 44, no. 3, 2014, p 12–16.

[8] Caramia, C., et al. Spatio-temporal gait parameters as estimated from wearable sensors placed at different waist levels. Proceedings of IEEE EMBS Biomedical Engineering and Sciences Conference, 2016, p. 727–730.

[9] Fida, B., et al. Real time event-based segmentation to classify locomotion activities through a single inertial sensor. Proceedings of the 5th EAI International Conference on Wireless Mobile Communication and Healthcare, 2015, pp. 104–107.

[10] Proto, A. et al. A new microcontroller-based system to optimize the digital conversion of signals originating from load cells builtin into pedals. Proceedings of IEEE 2014 Biomedical Circuits and Systems Conference, 2014, p. 300–303.

[11] Poon, C.C.Y., et al. Body Sensor Networks: In the Era of Big Data and Beyond. IEEE reviews in biomedical engineering, vol. 8, 2015, p. 4–16.

[12] Gambier, P., et al. Piezoelectric, solar and thermal energy harvesting for hybrid low-power generator systems with thinfilm batteries. Measurement Science and Technology, vol. 23, no. 1, 2012.

[13] Starner, T. Human-powered wearable computing. Ibm Systems Journal, vol. 35, no. 3-4, 1996, p. 618–629.

[14] Vullers, R.J.M., et al. Micropower energy harvesting. Solid-State Electronics, vol. 53, no. 7, 2009, p. 684–693.

[15] Roundy, S., et al. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, vol. 26, no. 11, 2003, pp. 1131–1144.

[16] Renaud, M., et al. Scavenging energy from human body: Design of a piezoelectric transducer. Transducers '05, Digest of Technical Papers, 2005, vol. 1-2, p. 784–787.

[17] Jung, W.-S., et al. Powerful curved piezoelectric generator for wearable applications, Nano Energy, 2015, vol. 13, p. 174–181.

[18] Shenck, N.S. and Paradiso, J.A. Energy scavenging with shoemounted piezoelectrics, Ieee Micro, 2001, vol. 21, no. 3, p.

30–42.

[19] Feenstra, J., et al. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack, Mechanical Systems and Signal Processing, 2008, vol. 22, no. 3, p. 721–734.

[20] Pozzi, M. and Zhu, M. Plucked piezoelectric bimorphs for kneejoint energy harvesting: modelling and experimental validation, Smart Materials & Structures, 2011, vol. 20, no. 5.

[21] Shukla, R. and Bell, A.J. PENDEXE: A novel energy harvesting concept for low frequency human waistline, Sensors and Actuators a-Physical, 2015, vol. 222, p. 39–47.

[22] Chang, C., et al. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Letters, vol. 10, no. 2, 2010, p. 726-731.

[23] Piezo Sensor—LDT Series. Available online: http://www.measspec.com/product/t_product.aspx?id=2484.

[24] Piezo Technical Manual. Available online: http://www.measspec.com/downloads/Piezo_Technical_Manual.pdf.

[25] Ottman, G.K., et al. Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Transactions on Power Electronics, 2002, vol. 17, p. 669–676.

[26] Proto, A., et al. Measurements of Generated Energy/Electrical Quantities from Locomotion Activities Using Piezoelectric Wearable Sensors for Body Motion Energy Harvesting, Sensors, 2016, vol. 16, n. 4, p. 524.

[27] Meindl, J.D.: Low-power microelectronics: retrospect and prospect, Proceedings of the Ieee, 1995, vol. 83, p. 619–635.

[28] Chandrakasan, A.P., et al. Ultralow-power electronics for biomedical applications, Annual Review of Biomedical Engineering, 2008, vol. 10, p. 247–274.

[29] Proto, A.: Nanogenerators for Human Body Energy Harvesting. Trends in Biotechnology, Article in Press.

[30] Zhang, M., et al. A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application, Nano Energy, 2015, vol. 13, pp. 298–305.

[31] Yang, B. and Yun, K.-S.: Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement, Sensors and Actuators a-Physical, 2012, vol. 188, p. 427–433.

[32] Hwang, G.-T., et al. Flexible Piezoelectric Thin-Film Energy Harvesters and Nanosensors for Biomedical Applications, Advanced Healthcare Materials, 2015, vol. 4, no. 5, p. 646–658.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#