#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Structure-Guided Mutation in the Major Capsid Protein Retargets BK Polyomavirus


Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especially for carbohydrate-binding viruses, as methods capable of structure-specificity studies are only relatively recently being developed for carbohydrates. We have characterized the receptor specificity, structure and infectivity of the human polyomavirus BKPyV, the causative agent of polyomavirus-associated nephropathy, and uncover a molecular switch for binding different carbohydrate receptors. We show that the b-series gangliosides GD3, GD2, GD1b and GT1b all can serve as receptors for BKPyV. The crystal structure of the BKPyV capsid protein VP1 in complex with GD3 reveals contacts with two sialic acid moieties in the receptor, providing a basis for the observed specificity. Comparison with the structure of simian virus 40 (SV40) VP1 bound to ganglioside GM1 identifies the amino acid at position 68 as a determinant of specificity. Mutation of this residue from lysine in BKPyV to serine in SV40 switches the receptor specificity of BKPyV from GD3 to GM1 both in vitro and in cell culture. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types.


Vyšlo v časopise: A Structure-Guided Mutation in the Major Capsid Protein Retargets BK Polyomavirus. PLoS Pathog 9(10): e32767. doi:10.1371/journal.ppat.1003688
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003688

Souhrn

Viruses within a family often vary in their cellular tropism and pathogenicity. In many cases, these variations are due to viruses switching their specificity from one cell surface receptor to another. The structural requirements that underlie such receptor switching are not well understood especially for carbohydrate-binding viruses, as methods capable of structure-specificity studies are only relatively recently being developed for carbohydrates. We have characterized the receptor specificity, structure and infectivity of the human polyomavirus BKPyV, the causative agent of polyomavirus-associated nephropathy, and uncover a molecular switch for binding different carbohydrate receptors. We show that the b-series gangliosides GD3, GD2, GD1b and GT1b all can serve as receptors for BKPyV. The crystal structure of the BKPyV capsid protein VP1 in complex with GD3 reveals contacts with two sialic acid moieties in the receptor, providing a basis for the observed specificity. Comparison with the structure of simian virus 40 (SV40) VP1 bound to ganglioside GM1 identifies the amino acid at position 68 as a determinant of specificity. Mutation of this residue from lysine in BKPyV to serine in SV40 switches the receptor specificity of BKPyV from GD3 to GM1 both in vitro and in cell culture. Our findings highlight the plasticity of viral receptor binding sites and form a template to retarget viruses to different receptors and cell types.


Zdroje

1. DecaprioJA, GarceaRL (2013) A cornucopia of human polyomaviruses. Nat Rev Microbiol 11: 264–276.

2. GardnerSD, FieldAM, ColemanDV, HulmeB (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1: 1253–1257.

3. HirschHH, SteigerJ (2003) Polyomavirus BK. Lancet Infect Dis 3: 611–623.

4. ShinoharaT, MatsudaM, ChengSH, MarshallJ, FujitaM, et al. (1993) BK virus infection of the human urinary tract. J Med Virol 41: 301–305.

5. NickeleitV, HirschHH, BinetIF, GudatF, PrinceO, et al. (1999) Polyomavirus infection of renal allograft recipients: from latent infection to manifest disease. J Am Soc Nephrol 10: 1080–1089.

6. BediA, MillerCB, HansonJL, GoodmanS, AmbinderRF, et al. (1995) Association of BK virus with failure of prophylaxis against hemorrhagic cystitis following bone marrow transplantation. J Clin Oncol 13: 1103–1109.

7. HirschHH (2005) BK virus: opportunity makes a pathogen. Clin Infect Dis 41: 354–360.

8. SegantiL, MastromarinoP, SupertiF, SinibaldiL, OrsiN (1981) Receptors for BK virus on human erythrocytes. Acta Virol 25: 177–181.

9. VarkiA (2001) Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol Suppl 33: 54–69.

10. SinibaldiL, GoldoniP, PietropaoloV, LonghiC, OrsiN (1990) Involvement of gangliosides in the interaction between BK virus and Vero cells. Arch Virol 113: 291–296.

11. LowJA, MagnusonB, TsaiB, ImperialeMJ (2006) Identification of gangliosides GD1b and GT1b as receptors for BK virus. J Virol 80: 1361–1366.

12. TsaiB, GilbertJM, StehleT, LencerW, BenjaminTL, et al. (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22: 4346–4355.

13. LiddingtonRC, YanY, MoulaiJ, SahliR, BenjaminTL, et al. (1991) Structure of simian virus 40 at 3.8-A resolution. Nature 354: 278–284.

14. StehleT, YanY, BenjaminTL, HarrisonSC (1994) Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature 369: 160–163.

15. StehleT, HarrisonSC (1997) High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J 16: 5139–5148.

16. NeuU, WoellnerK, GauglitzG, StehleT (2008) Structural basis of GM1 ganglioside recognition by simian virus 40. Proc Natl Acad Sci U S A 105: 5219–5224.

17. NeuU, MaginnisMS, PalmaAS, StrohLJ, NelsonCD, et al. (2010) Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif. Cell Host Microbe 8: 309–319.

18. NeuU, HengelH, BlaumBS, SchowalterRM, MacejakD, et al. (2012) Structures of Merkel cell polyomavirus VP1 complexes define a sialic acid binding site required for infection. PLoS Pathog 8: e1002738.

19. MayerM, BerndM (1999) Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew Chem Int Ed 38: 1784–1788.

20. DuganAS, GasparovicML, TsomaiaN, MierkeDF, O'HaraBA, et al. (2007) Identification of amino acid residues in BK virus VP1 that are critical for viability and growth. J Virol 81: 11798–11808.

21. MuchmoreEA, DiazS, VarkiA (1998) A structural difference between the cell surfaces of humans and the great apes. Am J Phys Anthropol 107: 187–198.

22. Campanero-RhodesMA, SmithA, ChaiW, SonninoS, MauriL, et al. (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81: 12846–12858.

23. MerrittEA, SarfatyS, van den AkkerF, L'HoirC, MartialJA, et al. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3: 166–175.

24. QianM, TsaiB (2010) Lipids and proteins act in opposing manners to regulate polyomavirus infection. J Virol 84: 9840–9852.

25. ShaymanJA, RadinNS (1991) Structure and function of renal glycosphingolipids. Am J Physiol 260: F291–302.

26. HolthoferH, ReivinenJ, MiettinenA (1994) Nephron segment and cell-type specific expression of gangliosides in the developing and adult kidney. Kidney Int 45: 123–130.

27. YuRK, NakataniY, YanagisawaM (2009) The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 50 Suppl: S440–445.

28. PerssonBD, MullerS, ReiterDM, SchmittBB, MarttilaM, et al. (2009) An arginine switch in the species B adenovirus knob determines high-affinity engagement of cellular receptor CD46. J Virol 83: 673–686.

29. HuefferK, ParrishCR (2003) Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol 6: 392–398.

30. GamblinSJ, SkehelJJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285: 28403–28409.

31. EashS, AtwoodWJ (2005) Involvement of cytoskeletal components in BK virus infectious entry. J Virol 79: 11734–11741.

32. HoulistonRS, JacobsBC, Tio-GillenAP, VerschuurenJJ, KhieuNH, et al. (2009) STD-NMR used to elucidate the fine binding specificity of pathogenic anti-ganglioside antibodies directly in patient serum. Biochemistry 48: 220–222.

33. BrissonJR, BaumannH, ImbertyA, PerezS, JenningsHJ (1992) Helical epitope of the group B meningococcal alpha(2–8)-linked sialic acid polysaccharide. Biochemistry 31: 4996–5004.

34. MichonF, BrissonJR, JenningsHJ (1987) Conformational differences between linear alpha (2–8)-linked homosialooligosaccharides and the epitope of the group B meningococcal polysaccharide. Biochemistry 26: 8399–8405.

35. HaselhorstT, BlanchardH, FrankM, KraschnefskiMJ, KiefelMJ, et al. (2007) STD NMR spectroscopy and molecular modeling investigation of the binding of N-acetylneuraminic acid derivatives to rhesus rotavirus VP8* core. Glycobiology 17: 68–81.

36. KabschW (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr 66: 133–144.

37. CCP4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763.

38. AdamsPD, AfoninePV, BunkocziG, ChenVB, DavisIW, et al. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–221.

39. EmsleyP, CowtanK (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

40. MurshudovGN, VaginAA, DodsonEJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240–255.

41. FrankM, LuttekeT, von der LiethCW (2007) GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucl Acid Res 35: 287–290.

42. KriegerE, DardenT, NabuursSB, FinkelsteinA, VriendG (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57: 678–683.

43. PalmaAS, FeiziT, ZhangY, StollMS, LawsonAM, et al. (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281: 5771–5779.

44. SteinbergSF (2008) Structural basis of protein kinase C isoform function. Physiolog Rev 88: 1341–1378.

45. Stoll MS, Feizi T. Software tools for storing, processing and displaying carbohydrate microarray data. In: Kettner C, editor; 2009; Potsdam, Germany. Beilstein Institute for the Advancement of Chemical Sciences.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 10
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#