#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Viral and Bacterial Interactions in the Upper Respiratory Tract


Respiratory infectious diseases are mainly caused by viruses or bacteria that often interact with one another. Although their presence is a prerequisite for subsequent infections, viruses and bacteria may be present in the nasopharynx without causing any respiratory symptoms. The upper respiratory tract hosts a vast range of commensals and potential pathogenic bacteria, which form a complex microbial community. This community is assumed to be constantly subject to synergistic and competitive interspecies interactions. Disturbances in the equilibrium, for instance due to the acquisition of new bacteria or viruses, may lead to overgrowth and invasion. A better understanding of the dynamics between commensals and pathogens in the upper respiratory tract may provide better insight into the pathogenesis of respiratory diseases. Here we review the current knowledge regarding specific bacterial–bacterial and viral–bacterial interactions that occur in the upper respiratory niche, and discuss mechanisms by which these interactions might be mediated. Finally, we propose a theoretical model to summarize and illustrate these mechanisms.


Vyšlo v časopise: Viral and Bacterial Interactions in the Upper Respiratory Tract. PLoS Pathog 9(1): e32767. doi:10.1371/journal.ppat.1003057
Kategorie: Review
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003057

Souhrn

Respiratory infectious diseases are mainly caused by viruses or bacteria that often interact with one another. Although their presence is a prerequisite for subsequent infections, viruses and bacteria may be present in the nasopharynx without causing any respiratory symptoms. The upper respiratory tract hosts a vast range of commensals and potential pathogenic bacteria, which form a complex microbial community. This community is assumed to be constantly subject to synergistic and competitive interspecies interactions. Disturbances in the equilibrium, for instance due to the acquisition of new bacteria or viruses, may lead to overgrowth and invasion. A better understanding of the dynamics between commensals and pathogens in the upper respiratory tract may provide better insight into the pathogenesis of respiratory diseases. Here we review the current knowledge regarding specific bacterial–bacterial and viral–bacterial interactions that occur in the upper respiratory niche, and discuss mechanisms by which these interactions might be mediated. Finally, we propose a theoretical model to summarize and illustrate these mechanisms.


Zdroje

1. World Health Organization Geneva, Health Statistics and Informatics Department (2011) Causes of death 2008. In: World health statistics 2011. 170 pages, ISBN 978 92 4 156419 9 (NLM classification: WA 900.1). pp. 57–76. Available: http://www.who.int/gho/publications/world_health_statistics/EN_WHS2011_Full.pdf. Accessed 7 December 2012.

2. BlackRE, CousensS, JohnsonHL, LawnJE, RudanI, et al. (2010) Global, regional, and national causes of child mortality in 2008: A systematic analysis. child health epidemiology reference group of WHO and UNICEF. Lancet 375(9730) 1969–1987.

3. VergisonA, DaganR, ArguedasA, BonhoefferJ, CohenR, et al. (2010) Otitis media and its consequences: Beyond the earache. Lancet Infect Dis 10(3) 195–203 10.1016/S1473-3099(10)70012-8.

4. WatsonKBH, CarvilleKMA, BowmanJBA, JacobyP, RileyTV, et al. (2006) Upper respiratory tract bacterial carriage in aboriginal and non-aboriginal children in a semi-arid area of western Australia. Pediatr Infect Dis J 25(9) 782–790 10.1097/01.inf.0000232705.49634.68.

5. BlaserMJ, FalkowS (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7(12):887–894 10.1038/nrmicro2245.

6. MurphyT, BakaletzL, SmeestersP (2009) Microbial interactions in the respiratory tract. Pediatr Infect Dis J 28(10):S121–S126.

7. HardinG (1960) The competitive exclusion principle. Science 131(3409):1292–1297.

8. SporA, KorenO, LeyR (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290.

9. GriceE, SegreJ (2011) The skin microbiome. Nat Rev Microbiol 9(4):244–253.

10. BogaertD, De GrootR, HermansPW (2004) Streptococcus pneumoniae colonisation: The key to pneumococcal disease. Lancet Infect Dis 4: 144–154.

11. Garcia-RodriguezJA, Fresnadillo MartinezMJ (2002) Dynamics of nasopharyngeal colonization by potential respiratory pathogens. J Antimicrob Chemother 50(suppl_3):59–74 10.1093/jac/dkf506.

12. MargolisE, YatesA, LevinB (2010) The ecology of nasal colonization of streptococcus pneumoniae, haemophilus influenzae and staphylococcus aureus: The role of competition and interactions with host's immune response. BMC Microbiology 10(1):59.

13. ChessonP (2000) General theory of competitive coexistence in spatially-varying environments. Theor Popul Biol 58(3):211–237 10.1006/tpbi.2000.1486.

14. BrogdenKA, GuthmillerJM, TaylorCE (2005) Human polymicrobial infections. Lancet 365(9455):253–255 10.1016/S0140-6736(05)17745-9.

15. KwambanaB, BarerM, BottomleyC, AdegbolaR, AntonioM (2011) Early acquisition and high nasopharyngeal co-colonisation by streptococcus pneumoniae and three respiratory pathogens amongst Gambian new-borns and infants. BMC Infect Dis 11(1):175.

16. JourdainS, SmeestersPR, DenisO, DramaixM, SputaelV, et al. (2011) Differences in nasopharyngeal bacterial carriage in preschool children from different socio-economic origins. Clin Microbiol Infect 17(6):907–914 10.1111/j.14690691.2010.03410.x.

17. MackenzieG, LeachA, CarapetisJ, FisherJ, MorrisP (2010) Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: Cross-sectional surveys in a population with high rates of pneumococcal disease. BMC Infect Dis 10(1):304.

18. BrookI, GoberAE (2006) Increased recovery of moraxella catarrhalis and haemophilus influenzae in association with group A β-haemolytic streptococci in healthy children and those with pharyngo-tonsillitis. J Med Microbiol 55(8):989–992 10.1099/jmm.0.46325-0.

19. LafontaineER, WallD, VanlerbergSL, DonabedianH, SledjeskiDD (2004) Moraxella catarrhalis coaggregates with streptococcus pyogenes and modulates interactions of S. pyogenes with human epithelial cells. Infect Immun 72: 6689–6693.

20. TanoK, OlofssonC, Grahn-HåkanssonE, HolmSE (1999) In vitro inhibition of S. pneumoniae, nontypable H. influenzae and M. catarrhalis by alpha-hemolytic streptococci from healthy children. Int J Pediatr Otorhinolaryngol 47(1):49–56 DOI: 10.1016/S0165-5876(98)00174-8.

21. TanoK, HåkanssonEG, HolmSE, HellströmS (2002) Bacterial interference between pathogens in otitis media and alpha-haemolytic streptococci analysed in an in vitro model. Acta Otolaryngol 122(1):78–85 10.1080/00016480252775788.

22. TanoK, HellströmS (2002) Bacterial adherence to pharyngeal cells: In vitro studies with alpha-haemolytic streptococci and haemophilus influenzae. Acta Otolaryngol 122(7):745–751 10.1080/00016480260349827.

23. Regev-YochayG, TrzcinskiK, ThompsonCM, MalleyR, LipsitchM (2006) Interference between streptococcus pneumoniae and staphylococcus aureus: In vitro hydrogen peroxide-mediated killing by streptococcus pneumoniae. J Bacteriol 188(13):4996–5001 10.1128/JB.00317-06.

24. PericoneCD, OverwegK, HermansPWM, WeiserJN (2000) Inhibitory and bactericidal effects of hydrogen peroxide production by streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect Immun 68(7):3990–3997 10.1128/IAI.68.7.3990-3997.2000.

25. MargolisE (2009) Hydrogen peroxide-mediated interference competition by streptococcus pneumoniae has no significant effect on staphylococcus aureus nasal colonization of neonatal rats. J Bacteriol 191(2):571–575 10.1128/JB.00950-08.

26. Regev-YochayG, MalleyR, RubinsteinE, RazM, DaganR, et al. (2008) In vitro bactericidal activity of streptococcus pneumoniae and bactericidal susceptibility of staphylococcus aureus strains isolated from cocolonized versus noncocolonized children. J Clin Microbiol 46(2):747–749 10.1128/JCM.01781-07.

27. ShakhnovichEA, KingSJ, WeiserJN (2002) Neuraminidase expressed by streptococcus pneumoniae desialylates the lipopolysaccharide of neisseria meningitidis and haemophilus influenzae: A paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect Immun 70(12):7161–7164 10.1128/IAI.70.12.7161-7164.2002.

28. CundellD, GerardN, GerardC, Idanpaan-HeikkilaI, TuomanenE (1995) Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377(6548):435–438.

29. WeiserJN, ShchepetovM, ChongSTH (1997) Decoration of lipopolysaccharide with phosphorylcholine: A phase-variable characteristic of haemophilus influenzae. Infect Immun 65: 943–950.

30. TanakaN, FukuyamaS, FukuiwaT, KawabataM, SagaraY, et al. (2007) Intranasal immunization with phosphorylcholine induces antigen specific mucosal and systemic immune responses in mice. Vaccine 25(14):2680–2687 10.1016/j.vaccine.2006.10.014.

31. GoldenbergHB, McCoolTL, WeiserJN (2004) Cross-reactivity of human immunoglobulin G2 recognizing phosphorylcholine and evidence for protection against major bacterial pathogens of the human respiratory tract. J Infect Dis 190(7):1254–1263.

32. LysenkoE, RatnerA, NelsonA, WeiserJ (2005) The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. PLoS Pathog 1(1):e1 doi:10.1371/journal.ppat.0010001

33. LysenkoES, LijekRS, BrownSP, WeiserJN (2010) Within-host competition drives selection for the capsule virulence determinant of streptococcus pneumoniae. Curr Biol 20(13):1222–1226 10.1016/j.cub.2010.05.051.

34. MadhiSA, AdrianP, KuwandaL, CutlandC, AlbrichWC, et al. (2007) Long-term effect of pneumococcal conjugate vaccine on nasopharyngeal colonization by streptococcus pneumoniae—and associated interactions with staphylococcus aureus and haemophilus influenzae colonization—in HIV-infected and HIV-uninfected children. J Infect Dis 196(11):1662–1666.

35. BogaertD, NouwenJ, HermansPWM, van BelkumA (2006) Lack of interference between streptococcus pneumoniae and staphylococcus aureus in HIV-infected individuals? J Infect Dis 194(11):1617–1618.

36. TanTT, MörgelinM, ForsgrenA, RiesbeckK (2007) Haemophilus influenzae survival during complement-mediated attacks is promoted by moraxella catarrhalis outer membrane vesicles. J Infect Dis 195(11):1661–1670.

37. PettigrewMM, GentJF, PylesRB, MillerAL, Nokso-KoivistoJ, et al. (2011) Viral-bacterial interactions and risk of acute otitis media complicating upper respiratory tract infection. J Clin Microbiol 49(11):3750–3755 10.1128/JCM.01186-11.

38. McCullersJA (2006) Insights into the interaction between influenza virus and pneumococcus. Clin Microbiol Rev 19: 571–582.

39. McCullersJA, RehgJE (2002) Lethal synergism between influenza virus and streptococcus pneumoniae: Characterization of a mouse model and the role of platelet-activating factor receptor. J Infect Dis 186(3):341–350 10.1086/341462.

40. WangJH, KwonHJ, JangYJ (2009) Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope 119(7):1406–1411 10.1002/lary.20498.

41. IshizukaS, YamayaM, SuzukiT, TakahashiH, IdaS, et al. (2003) Effects of rhinovirus infection on the adherence of streptococcus pneumoniae to cultured human airway epithelial cells. J Infect Dis 188(12):1928–1939 10.1086/379833.

42. SajjanUS, JiaY, NewcombDC, BentleyJK, LukacsNW, et al. (2006) H. influenzae potentiates airway epithelial cell responses to rhinovirus by increasing ICAM-1 and TLR3 expression. FASEB J 20(12):2121–2123 10.1096/fj.06-5806fje.

43. WhitemanSC, BiancoA, KnightRA, SpiteriMA (2003) Human rhinovirus selectively modulates membranous and soluble forms of its intercellular adhesion Molecule–1 (ICAM-1) receptor to promote epithelial cell infectivity. J Biol Chem 278: 11954–11961.

44. WangJH, KwonHJ, LeeBJ, JangYJ (2007) Staphylococcal enterotoxins A and B enhance rhinovirus replication in A549 cells. Am J Rhinol 21(6):670–674.

45. VerkaikNJ, NguyenDT, de VogelCP, MollHA, VerbrughHA, et al. (2011) Streptococcus pneumoniae exposure is associated with human metapneumovirus seroconversion and increased susceptibility to in vitro HMPV infection. Clin Microbiol Infect 17(12):1840–1844 10.1111/j.1469-0691.2011.03480.x.

46. HamentJ, AertsPC, FleerA, Van DijkH, HarmsenT, et al. (2005) Direct binding of respiratory syncytial virus to pneumococci: A phenomenon that enhances both pneumococcal adherence to human epithelial cells and pneumococcal invasiveness in a murine model. Pediatr Res 58(6):1198–1203.

47. HamentJ, AertsPC, FleerA, Van DijkH, HarmsenT, et al. (2004) Enhanced adherence of streptococcus pneumoniae to human epithelial cells infected with respiratory syncytial virus. Pediatr Res 55(6):972–978.

48. AvadhanulaV, RodriguezCA, DeVincenzoJP, WangY, WebbyRJ, et al. (2006) Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner. J Virol 80(4):1629–1636 10.1128/JVI.80.4.

49. YokotaS, OkabayashiT, YotoY, HoriT, TsutsumiH, et al. (2010) Fosfomycin suppresses RS-virus-induced streptococcus pneumoniae and haemophilus influenzae adhesion to respiratory epithelial cells via the platelet-activating factor receptor. FEMS Microbiol Lett 310(1):84–90 10.1111/j.1574-6968.2010.02049.x.

50. RazaMW, BlackwellCC, EltonRA, WeirDM (2000) Bactericidal activity of a monocytic cell line (THP-1) against common respiratory tract bacterial pathogens is depressed after infection with respiratory syncytial virus. J Med Microbiol 49(3):227–233.

51. AvadhanulaV, WangY, PortnerA, AddersonE (2007) Nontypeable haemophilus influenzae and streptococcus pneumoniae bind respiratory syncytial virus glycoprotein. J Med Microbiol 56(9):1133–1137 10.1099/jmm.0.47086-0.

52. JiangZ, NagataN, MolinaE, BakaletzLO, HawkinsH, et al. (1999) Fimbria-mediated enhanced attachment of nontypeable haemophilus influenzae to respiratory syncytial virus-infected respiratory epithelial cells. Infect Immun 67(1):187–192.

53. HakanssonA, KiddA, WadellG, SabharwalH, SvanborgC (1994) Adenovirus infection enhances in vitro adherence of streptococcus pneumoniae. Infect Immun 62(7):2707–2714.

54. Kukavica-IbruljI, HamelinM, PrinceGA, GagnonC, BergeronY, et al. (2009) Infection with human metapneumovirus predisposes mice to severe pneumococcal pneumonia. J Virol 83(3):1341–1349 10.1128/JVI.01123-08.

55. StarkJM, StarkMA, ColasurdoGN, LeVineAM (2006) Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J Med Virol 78(6):829–838 10.1002/jmv.20631.

56. McGillivaryG, MasonKM, JurcisekJA, PeeplesME, BakaletzLO (2009) Respiratory syncytial virus-induced dysregulation of expression of a mucosal beta-defensin augments colonization of the upper airway by non-typeable haemophilus influenzae. Cell Microbiol 11(9):1399–1408 10.1111/j.1462-5822.2009.01339.x.

57. GouldingJ, GodleeA, VekariaS, HiltyM, SnelgroveR, et al. (2011) Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J Infect Dis 204(7):1086–1094.

58. PeltolaVT, MurtiKG, McCullersJA (2005) Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J Infect Dis 192(2):249–257 10.1086/430954.

59. PlotkowskiMC, PuchelleE, BeckG, JacquotJ, HannounC (1986) Adherence of type I streptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am Rev Respir Dis 134(5):1040–1044.

60. DiavatopoulosDA, ShortKR, PriceJT, WilkschJJ, BrownLE, et al. (2010) Influenza A virus facilitates streptococcus pneumoniae transmission and disease. FASEB J 24(6):1789–1798 10.1096/fj.09-146779.

61. PittetLA, Hall-StoodleyL, RutkowskiMR, HarmsenAG (2010) Influenza virus infection decreases tracheal mucociliary velocity and clearance of streptococcus pneumoniae. Am J Respir Cell Mol Biol 42(4):450–460 10.1165/rcmb.2007-0417OC.

62. LeeLN, DiasP, HanD, YoonS, SheaA, et al. (2010) A mouse model of lethal synergism between influenza virus and haemophilus influenzae. Am J Pathol 176(2):800–811.10.2353/ajpath.2010.090596.

63. IversonA, BoydK, McAuleyJ, PlanoL, HartM, et al. (2011) Influenza virus primes mice for pneumonia from staphylococcus aureus. J Infect Dis 203(6):880–888.

64. SmallC, ShalerCR, McCormickS, JeyanathanM, DamjanovicD, et al. (2010) Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. J Immunol 184(4):2048–2056 10.4049/jimmunol.0902772.

65. SuzukiK, BakaletzLO (1994) Synergistic effect of adenovirus type 1 and nontypeable haemophilus influenzae in a chinchilla model of experimental otitis media. Infect Immun 62(5):1710–1718.

66. MichaelsRH, MyerowitzRL (1983) Viral enhancement of nasal colonization with haemophilus influenzae type b in the infant rat. Pediatr Res 17(6):472–473.

67. WiertsemaSP, ChidlowGR, KirkhamLS, CorscaddenKJ, MoweEN, et al. (2011) High detection rates of nucleic acids of a wide range of respiratory viruses in the nasopharynx and the middle ear of children with a history of recurrent acute otitis media. J Med Virol 83(11):2008–2017 10.1002/jmv.22221.

68. MooreHCBS (2010) GradDipClinEpi (2010) JacobyP, TaylorABA, HarnettG, BowmanJBA, et al. (2010) The interaction between respiratory viruses and pathogenic bacteria in the upper respiratory tract of asymptomatic aboriginal and non-aboriginal children. Pediatr Infect Dis J 29(6):540–545 10.1097/INF.0b013e3181d067cb.

69. PitkärantaA, RoivainenM, BlomgrenK, PeltolaJ, KaijalainenT, et al. (2006) Presence of viral and bacterial pathogens in the nasopharynx of otitis-prone children: A prospective study. Int J Pediatr Otorhinolaryngol 70(4):647–654 10.1016/j.ijporl.2005.08.018.

70. VareilleM, KieningerE, EdwardsMR, RegameyN (2011) The airway epithelium: Soldier in the fight against respiratory viruses. Clin Microbiol Rev 24: 210–229.

71. van der SluijsKF, van EldenLJR, NijhuisM, SchuurmanR, PaterJM, et al. (2004) IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J Immunol 172(12):7603–7609.

72. van der FlierM, ChhunN, WizemannT, MinJ, McCarthyJ, et al. (1995) Adherence of streptococcus pneumoniae to immobilized fibronectin. Infect Immun 63(11):4317–4322.

73. HeilmannC (2011) Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715: 105–123.

74. TanTT, NordströmT, ForsgrenA, RiesbeckK (2005) The respiratory pathogen moraxella catarrhalis adheres to epithelial cells by interacting with fibronectin through ubiquitous surface proteins A1 and A2. J Infect Dis 192(6):1029–1038.

75. SajjanU, WangQ, ZhaoY, GruenertDC, HershensonMB (2008) Rhinovirus disrupts the barrier function of polarized airway epithelial cells. Am J Respir Crit Care Med 178(12):1271–1281 10.1164/rccm.200801-136OC.

76. GanzT (2003) Defensins: Antimicrobial peptides of innate immunity. Nat Rev Imm 3: 710–720.

77. WangJH, LeeSH, KwonHJ, JangYJ (2010) Clarithromycin inhibits rhinovirus-induced bacterial adhesions to nasal epithelial cells. Laryngoscope 120(1):193–199 10.1002/lary.20670.

78. van der SluijsKF, van EldenLJR, NijhuisM, SchuurmanR, FlorquinS, et al. (2006) Involvement of the platelet-activating factor receptor in host defense against streptococcus pneumoniae during postinfluenza pneumonia. Am J Physiol Lung Cell Mol Physiol 290(1):L194–L199 10.1152/ajplung.00050.2005.

79. PeltolaVTP, MccullersJA (2004) Respiratory viruses predisposing to bacterial infections: Role of neuraminidase. Pediatr Infect Dis J 23(1) (Supplement):S87–S97.

80. AlymovaIV, PortnerA, TakimotoT, BoydKL, BabuYS, et al. (2005) The novel parainfluenza virus hemagglutinin-neuraminidase inhibitor BCX 2798 prevents lethal synergism between a paramyxovirus and streptococcus pneumoniae. Antimicrob Agents Chemother 49(1):398–405 10.1128/AAC.49.1.398-405.2005.

81. McCullersJA, BartmessKC (2003) Role of neuraminidase in lethal synergism between influenza virus and streptococcus pneumoniae. J Infect Dis 187(6):1000–1009.

82. HedlundM, AschenbrennerLM, JensenK, LarsonJL, FangF (2010) Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. J Infect Dis 201(7):1007–1015. 10.1086/651170.

83. KadiogluA, WeiserJN, PatonJC, AndrewPW (2008) The role of streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6(4):288–301 10.1038/nrmicro1871.

84. van der SluijsKF, van der PollT, LutterR, JuffermansNP, SchultzMJ (2010) Bench-to-bedside review: Bacterial pneumonia with influenza - pathogenesis and clinical implications. Crit Care 14(2):219.

85. McNameeLA, HarmsenAG (2006) Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary streptococcus pneumoniae infection. Infect Immun 74(12):6707–6721 10.1128/IAI.00789-06.

86. ColamussiML, WhiteMR, CrouchE, HartshornKL (1999) Influenza A virus accelerates neutrophil apoptosis and markedly potentiates apoptotic effects of bacteria. Blood 93(7):2395–2403.

87. EngelichG, WhiteM, HartshornKL (2001) Neutrophil survival is markedly reduced by incubation with influenza virus and streptococcus pneumoniae: Role of respiratory burst. J Leukoc Biol 69(1):50–56.

88. ShahangianA, ChowEK, TianX, KangJR, GhaffariA, et al. (2009) Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J Clin Invest 119(7):1910–1920 10.1172/JCI35412.

89. SunK, MetzgerDW (2008) Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat Med 14(5):558–564 10.1038/nm1765.

90. DidierlaurentA, GouldingJ, PatelS, SnelgroveR, LowL, et al. (2008) Sustained desensitization to bacterial toll-like receptor ligands after resolution of respiratory influenza infection. J Exp Med 205(2):323–329.

91. KussSK, BestGT, EtheredgeCA, PruijssersAJ, FriersonJM, et al. (2011) Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334(6053):249–252.

92. KaneM, CaseLK, KopaskieK, KozlovaA, MacDearmidA, et al. (2011) Successful transmission of a retrovirus depends on the commensal microbiota. Science 334(6053):245–249.

93. JarttiT, JarttiL, PeltolaV, WarisM, RuuskanenO (2008) Identification of respiratory viruses in asymptomatic subjects: Asymptomatic respiratory viral infections. Pediatr Infect Dis J 27(12):1103–1107.

94. van BentenI, KoopmanL, NiestersB, HopW, van MiddelkoopB, et al. (2003) Predominance of rhinovirus in the nose of symptomatic and asymptomatic infants. Pediatr Allergy Immunol 14(5):363-363-370.

95. JansenRR, WieringaJ, KoekkoekSM, VisserCE, PajkrtD, et al. (2011) Frequent detection of respiratory viruses without symptoms: Toward defining clinically relevant cutoff values. J Clin Microbiol 49(7):2631–2636 10.1128/JCM.02094-10.

96. KuselM, de KlerkNH, HoltPG, KebadzeT, JohnstonSL, et al. (2006) Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study. Pediatr Infect Dis J 25(8):680–686.

97. BerkleyJA, MunywokiP, NgamaM, KazunguS, AbwaoJ, et al. (2010) Viral etiology of severe pneumonia among Kenyan infants and children. JAMA 303(20):2051–2057 10.1001/jama.2010.675.

98. MathisenM, StrandT, Valentiner-BranthP, ChandyoR, BasnetS, et al. (2010) Respiratory viruses in Nepalese children with and without pneumonia: A case-control study. Pediatr Infect Dis J 29(8):731–735.

99. FryA, LuX, OlsenS, ChittaganpitchM, SawatwongP, et al. (2011) Human rhinovirus infections in rural Thailand: Epidemiological evidence for rhinovirus as both pathogen and bystander. PLoS ONE 6(3):e17780 doi:10.1371/journal.pone.0017780

100. SingletonRJ, BulkowLR, MiernykK, DeByleC, PruittL, et al. (2010) Viral respiratory infections in hospitalized and community control children in Alaska. J Med Virol 82(7):1282–1290 10.1002/jmv.21790.

101. van der ZalmMM, van EwijkBE, WilbrinkB, UiterwaalCSPM, WolfsTFW, et al. (2009) Respiratory pathogens in children with and without respiratory symptoms. J Pediatr 154(3):396–400 e1. 10.1016/j.jpeds.2008.08.036.

102. Garcia-GarciaM, CalvoC, PozoF, Perez-BrenaP, BracamonteT, et al. (2008) Human bocavirus detection in nasopharyngeal aspirates of children without clinical symptoms of respiratory infection. Pediatr Infect Dis J 27(4):358–360.

103. WintherB, AlperCM, MandelEM, DoyleWJ, HendleyJO (2007) Temporal relationships between colds, upper respiratory viruses detected by polymerase chain reaction, and otitis media in young children followed through a typical cold season. Pediatrics 119(6):1069–1075.

104. WintherB, HaydenFG, HendleyJO (2006) Picornavirus infections in children diagnosed by RT-PCR during longitudinal surveillance with weekly sampling: Association with symptomatic illness and effect of season. J Med Virol 78(5):644–650 10.1002/jmv.20588.

105. ThavagnanamS, ChristieSN, DohertyGM, CoylePV, ShieldsMD, et al. (2010) Respiratory viral infection in lower airways of asymptomatic children. Acta Paediatr 99(3):394–398 10.1111/j.1651-2227.2009.01627.x.

106. MartinET, FairchokMP, KuypersJ, MagaretA, ZerrDM, et al. (2010) Frequent and prolonged shedding of bocavirus in young children attending daycare. J Clin Infect Dis 201(11):1625–1632 10.1086/652405.

107. FalseyAR, FormicaMA, TreanorJJ, WalshEE (2003) Comparison of quantitative reverse transcription-PCR to viral culture for assessment of respiratory syncytial virus shedding. J Clin Microbiol 41(9):4160–4165 10.1128/JCM.41.9.4160-4165.2003.

108. KaluSU, LoeffelholzM, BeckE, PatelJA, RevaiK, et al. (2010) Persistence of adenovirus nucleic acids in nasopharyngeal secretions: A diagnostic conundrum. Pediatr Infect Dis J 29(8):746–750.

109. PeltolaV, WarisM, ÖsterbackR, SusiP, RuuskanenO, et al. (2008) Rhinovirus transmission within families with children: Incidence of symptomatic and asymptomatic infections. J Infect Dis 197(3):382–389.

110. BogaertD, KeijserB, HuseS, RossenJ, VeenhovenR, et al. (2011) Variability and diversity of nasopharyngeal microbiota in children: A metagenomic analysis. PLoS ONE 6(2):e17035 doi:10.1371/journal.pone.0017035

111. PettigrewMM, LauferAS, GentJF, KongY, FennieKP, et al. (2012) Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl Environ Microbiol 78(17):6262–6270 10.1128/AEM.01051-12.

112. LongtinJ, BastienM, GilcaR, LeblancE, de SerresG, et al. (2008) Human bocavirus infections in hospitalized children and adults. Emerg Infect Dis 14(2):217–221.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#