#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

News from the Fungal Front: Wall Proteome Dynamics and Host–Pathogen Interplay


article has not abstract


Vyšlo v časopise: News from the Fungal Front: Wall Proteome Dynamics and Host–Pathogen Interplay. PLoS Pathog 8(12): e32767. doi:10.1371/journal.ppat.1003050
Kategorie: Pearls
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003050

Souhrn

article has not abstract


Zdroje

1. KlisFM, de KosterCG, BrulS (2011) A mass spectrometric view of the fungal wall proteome. Future Microbiol 6: 941–951.

2. HeilmannCJ, SorgoAG, SiliakusAR, DekkerHL, BrulS, et al. (2011) Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157: 2297–2307.

3. SorgoAG, HeilmannCJ, DekkerHL, BekkerM, BrulS, et al. (2011) Effects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans. Eukaryot Cell 10: 1071–1081.

4. SosinskaGJ, de KoningLJ, de GrootPW, MandersEM, DekkerHL, et al. (2011) Mass spectrometric quantification of the adaptations in the wall proteome of Candida albicans in response to ambient pH. Microbiology 157: 136–146.

5. StaabJF, BradwaySD, FidelPL, SundstromP (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535–1538.

6. HoyerLL, GreenCB, OhSH, ZhaoX (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family–a sticky pursuit. Med Mycol 46: 1–15.

7. BoisrameA, CornuA, Da CostaG, RichardML (2011) Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family. Eukaryot Cell 10: 1317–1330.

8. SalgadoPS, YanR, TaylorJD, BurchellL, JonesR, et al. (2011) Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A 108: 15775–15779.

9. LipkePN, GarciaMC, AlsteensD, RamsookCB, KlotzSA, et al. (2012) Strengthening relationships: amyloids create adhesion nanodomains in yeasts. Trends Microbiol 20: 59–65.

10. AlmeidaRS, BrunkeS, AlbrechtA, ThewesS, LaueM, et al. (2008) the hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 4: e1000217.

11. LiuY, FillerSG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10: 168–173.

12. LuoG, IbrahimAS, SpellbergB, NobileCJ, MitchellAP, et al. (2010) Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis 201: 1718–1728.

13. KulkarniRD, KelkarHS, DeanRA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28: 118–121.

14. SorgoAG, HeilmannCJ, DekkerHL, BrulS, de KosterCG, et al. (2010) Mass spectrometric analysis of the secretome of Candida albicans. Yeast 27: 661–672.

15. SosinskaGJ, de GrootPW, Teixeira de MattosMJ, DekkerHL, de KosterCG, et al. (2008) Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154: 510–520.

16. WeissmanZ, ShemerR, ConibearE, KornitzerD (2008) An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Mol Microbiol 69: 201–217.

17. WeissmanZ, KornitzerD (2004) A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 53: 1209–1220.

18. BraunV, HantkeK (2011) Recent insights into iron import by bacteria. Curr Opin Chem Biol 15: 328–334.

19. BrownGD, NeteaMG (2012) Exciting developments in the immunology of fungal infections. Cell Host Microbe 11: 422–424.

20. FrohnerIE, BourgeoisC, YatsykK, MajerO, KuchlerK (2009) Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71: 240–252.

21. Szafranski-SchneiderE, SwidergallM, CottierF, TielkerD, RomanE, et al. (2012) Msb2 shedding protects Candida albicans against antimicrobial peptides. PLoS Pathog 8: e1002501.

22. PuriS, KumarR, ChadhaS, TatiS, ContiHR, et al. (2012) Secreted aspartic protease cleavage of Candida albicans Msb2 activates Cek1 MAPK signaling affecting biofilm formation and oropharyngeal candidiasis. PLoS One 7: e46020.

23. AlbrechtA, FelkA, PichovaI, NaglikJR, SchallerM, et al. (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281: 688–694.

24. SchildL, HeykenA, de GrootPW, HillerE, MockM, et al. (2010) Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10: 98–109.

25. EneIV, HeilmannCJ, SorgoAG, WalkerLA, de KosterCG, et al. (2012) Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics doi: 10.1002/pmic.201200228.

26. VecchiarelliA, PericoliniE, GabrielliE, PietrellaD (2012) New approaches in the development of a vaccine for mucosal candidiasis: progress and challenges. Front Microbiol 3: 294.

27. SpellbergB, IbrahimAS, YeamanMR, LinL, FuY, et al. (2008) The antifungal vaccine derived from the recombinant N terminus of Als3p protects mice against the bacterium Staphylococcus aureus. Infect Immun 76: 4574–4580.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2012 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#