Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft


Autoři: Lulin Huang aff001;  Zhonglin Jia aff002;  Yi Shi aff001;  Qin Du aff001;  Jiayu Shi aff005;  Ziyan Wang aff006;  Yandong Mou aff004;  Qingwei Wang aff001;  Bihe Zhang aff002;  Qing Wang aff002;  Shi Ma aff001;  He Lin aff001;  Shijun Duan aff002;  Bin Yin aff002;  Yansong Lin aff002;  Yiru Wang aff002;  Dan Jiang aff001;  Fang Hao aff001;  Lin Zhang aff001;  Haixin Wang aff001;  Suyuan Jiang aff002;  Huijuan Xu aff003;  Chengwei Yang aff002;  Chenghao Li aff002;  Jingtao Li aff002;  Bing Shi aff002;  Zhenglin Yang aff001
Působiště autorů: The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Clinical Laboratory, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China aff001;  State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China aff002;  Institute of Chengdu Biology, and Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China aff003;  Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China aff004;  Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, United States of America aff005;  Department of basic medicine, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China aff006
Vyšlo v časopise: Genetic factors define CPO and CLO subtypes of nonsyndromicorofacial cleft. PLoS Genet 15(10): e1008357. doi:10.1371/journal.pgen.1008357
Kategorie: Research Article
prolekare.web.journal.doi_sk: 10.1371/journal.pgen.1008357

Souhrn

Nonsyndromic orofacial cleft (NSOFC) is a severe birth defect that occurs early in embryonic development and includes the subtypes cleft palate only (CPO), cleft lip only (CLO) and cleft lip with cleft palate (CLP). Given a lack of specific genetic factor analysis for CPO and CLO, the present study aimed to dissect the landscape of genetic factors underlying the pathogenesis of these two subtypes using 6,986 cases and 10,165 controls. By combining a genome-wide association study (GWAS) for specific subtypes of CPO and CLO, as well as functional gene network and ontology pathway analysis, we identified 18 genes/loci that surpassed genome-wide significance (P < 5 × 10−8) responsible for NSOFC, including nine for CPO, seven for CLO, two for both conditions and four that contribute to the CLP subtype. Among these 18 genes/loci, 14 are novel and identified in this study and 12 contain developmental transcription factors (TFs), suggesting that TFs are the key factors for the pathogenesis of NSOFC subtypes. Interestingly, we observed an opposite effect of the genetic variants in the IRF6 gene for CPO and CLO. Moreover, the gene expression dosage effect of IRF6 with two different alleles at the same single-nucleotide polymorphism (SNP) plays important roles in driving CPO or CLO. In addition, PAX9 is a key TF for CPO. Our findings define subtypes of NSOFC using genetic factors and their functional ontologies and provide a clue to improve their diagnosis and treatment in the future.

Klíčová slova:

Gene expression – Gene ontologies – Genetic loci – Genome-wide association studies – Han Chinese people – Cleft lip – Cleft lip and palate – Cleft palate


Zdroje

1. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011;12(3):167–78. Epub 2011/02/19. nrg2933 [pii] doi: 10.1038/nrg2933 21331089; PubMed Central PMCID: PMC3086810.

2. Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet. 2009;374(9703):1773–85. doi: 10.1016/S0140-6736(09)60695-4 19747722.

3. Mossey P CE, Geneva (CH). Global Registry and Database on Craniofacial Anomalies. World Health Organization. 2003.

4. Massenburg BB, Jenny HE, Saluja S, Meara JG, Shrime MG, Alonso N. Barriers to Cleft Lip and Palate Repair Around the World. J Craniofac Surg. 2016;27(7):1741–5. Epub 2016/10/21. doi: 10.1097/SCS.0000000000003038 27763973.

5. Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate. Am J Med Genet C Semin Med Genet. 2013;163C(4):246–58. Epub 2013/10/15. doi: 10.1002/ajmg.c.31381 24124047; PubMed Central PMCID: PMC3925974.

6. Rahimov F, Jugessur A, Murray JC. Genetics of nonsyndromic orofacial clefts. Cleft Palate Craniofac J. 2012;49(1):73–91. doi: 10.1597/10-178 21545302; PubMed Central PMCID: PMC3437188.

7. Mossey PA, Modell B. Epidemiology of oral clefts 2012: an international perspective. Front Oral Biol. 2012;16:1–18. doi: 10.1159/000337464 22759666.

8. Fan D, Wu S, Liu L, Xia Q, Tian G, Wang W, et al. Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants. Oncotarget. 2018;9(17):13981–90. Epub 2018/03/24. doi: 10.18632/oncotarget.24238 29568410; PubMed Central PMCID: PMC5862631.

9. Mossey P, Little J. Addressing the challenges of cleft lip and palate research in India. Indian J Plast Surg. 2009;42 Suppl:S9–S18. doi: 10.4103/0970-0358.57182 19884687; PubMed Central PMCID: PMC2825065.

10. Chung CS, Beechert AM, Lew RE. Test of genetic heterogeneity of cleft lip with or without cleft palate as related to race and severity. Genet Epidemiol. 1989;6(5):625–31. doi: 10.1002/gepi.1370060507 2591732.

11. Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet. 2010;42(6):525–9. Epub 2010/05/04. ng.580 [pii] doi: 10.1038/ng.580 20436469; PubMed Central PMCID: PMC2941216.

12. Beaty TH, Ruczinski I, Murray JC, Marazita ML, Munger RG, Hetmanski JB, et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol. 2011;35(6):469–78. Epub 2011/05/28. doi: 10.1002/gepi.20595 21618603; PubMed Central PMCID: PMC3180858.

13. Birnbaum S, Ludwig KU, Reutter H, Herms S, Steffens M, Rubini M, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet. 2009;41(4):473–7. Epub 2009/03/10. ng.333 [pii] doi: 10.1038/ng.333 19270707.

14. Grant SF, Wang K, Zhang H, Glaberson W, Annaiah K, Kim CE, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24. J Pediatr. 2009;155(6):909–13. Epub 2009/08/07. S0022-3476(09)00575-7 [pii] doi: 10.1016/j.jpeds.2009.06.020 19656524.

15. Leslie EJ, Carlson JC, Shaffer JR, Butali A, Buxo CJ, Castilla EE, et al. Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate. Hum Genet. 2017;136(3):275–86. Epub 2017/01/06. doi: 10.1007/s00439-016-1754-7 [pii]. 28054174; PubMed Central PMCID: PMC5317097.

16. Ludwig KU, Mangold E, Herms S, Nowak S, Reutter H, Paul A, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nat Genet. 2012;44(9):968–71. Epub 2012/08/07. ng.2360 [pii] doi: 10.1038/ng.2360 22863734; PubMed Central PMCID: PMC3598617.

17. Ludwig KU, Bohmer AC, Bowes J, Nikolic M, Ishorst N, Wyatt N, et al. Imputation of orofacial clefting data identifies novel risk loci and sheds light on the genetic background of cleft lip +/- cleft palate and cleft palate only. Hum Mol Genet. 2017;26(4):829–42. Epub 2017/01/15. ddx012 [pii] doi: 10.1093/hmg/ddx012 28087736; PubMed Central PMCID: PMC5409059.

18. Mangold E, Ludwig KU, Birnbaum S, Baluardo C, Ferrian M, Herms S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nat Genet. 2010;42(1):24–6. Epub 2009/12/22. ng.506 [pii] doi: 10.1038/ng.506 20023658.

19. Sun Y, Huang Y, Yin A, Pan Y, Wang Y, Wang C, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Commun. 2015;6:6414. Epub 2015/03/17. ncomms7414 [pii] doi: 10.1038/ncomms7414 25775280.

20. Edwards AO, Ritter R, 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421–4. doi: 10.1126/science.1110189 15761121.

21. Rojas-Martinez A, Reutter H, Chacon-Camacho O, Leon-Cachon RB, Munoz-Jimenez SG, Nowak S, et al. Genetic risk factors for nonsyndromic cleft lip with or without cleft palate in a Mesoamerican population: Evidence for IRF6 and variants at 8q24 and 10q25. Birth Defects Res A Clin Mol Teratol. 2010;88(7):535–7. Epub 2010/06/22. doi: 10.1002/bdra.20689 20564431.

22. Wattanawong K, Rattanasiri S, McEvoy M, Attia J, Thakkinstian A. Association between IRF6 and 8q24 polymorphisms and nonsyndromic cleft lip with or without cleft palate: Systematic review and meta-analysis. Birth Defects Res A Clin Mol Teratol. 2016;106(9):773–88. Epub 2016/08/12. doi: 10.1002/bdra.23540 27511269; PubMed Central PMCID: PMC5095821.

23. Zucchero TM, Cooper ME, Maher BS, Daack-Hirsch S, Nepomuceno B, Ribeiro L, et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N Engl J Med. 2004;351(8):769–80. Epub 2004/08/20. doi: 10.1056/NEJMoa032909 351/8/769 [pii]. 15317890.

24. Yu Y, Zuo X, He M, Gao J, Fu Y, Qin C, et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat Commun. 2017;8:14364. doi: 10.1038/ncomms14364 28232668; PubMed Central PMCID: PMC5333091.

25. Wang K, Li M, Hakonarson H. Analysing biological pathways in genome-wide association studies. Nat Rev Genet. 2010;11(12):843–54. doi: 10.1038/nrg2884 21085203.

26. Ideker T, Dutkowski J, Hood L. Boosting signal-to-noise in complex biology: prior knowledge is power. Cell. 2011;144(6):860–3. doi: 10.1016/j.cell.2011.03.007 21414478; PubMed Central PMCID: PMC3102020.

27. Chen Y, Lin Y, Vithana EN, Jia L, Zuo X, Wong TY, et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat Genet. 2014;46(10):1115–9. Epub 2014/09/01. ng.3078 [pii] doi: 10.1038/ng.3078 25173107.

28. Carlson JC, Anand D, Butali A, Buxo CJ, Christensen K, Deleyiannis F, et al. A systematic genetic analysis and visualization of phenotypic heterogeneity among orofacial cleft GWAS signals. Genet Epidemiol. 2019. doi: 10.1002/gepi.22214 31172578.

29. Butali A, Mossey PA, Adeyemo WL, Eshete MA, Gowans LJJ, Busch TD, et al. Genomic analyses in african populations identify novel risk loci for cleft palate. Hum Mol Genet. 2018. doi: 10.1093/hmg/ddy402 30452639; PubMed Central PMCID: PMC6400042.

30. Yang H, Robinson PN, Wang K. Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods. 2015;12(9):841–3. doi: 10.1038/nmeth.3484 26192085; PubMed Central PMCID: PMC4718403.

31. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010;26(22):2927–8. doi: 10.1093/bioinformatics/btq562 PubMed Central PMCID: PMC2971582. 20926419

32. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211 19131956.

33. Rahimov F, Marazita ML, Visel A, Cooper ME, Hitchler MJ, Rubini M, et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip. Nat Genet. 2008;40(11):1341–7. Epub 2008/10/07. ng.242 [pii] doi: 10.1038/ng.242 18836445; PubMed Central PMCID: PMC2691688.

34. Boyle EA, Li YI, Pritchard JK. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell. 2017;169(7):1177–86. Epub 2017/06/18. S0092-8674(17)30629-3 [pii] doi: 10.1016/j.cell.2017.05.038 28622505.

35. Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper-Sal lari R, et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res. 2014;24(1):1–13. Epub 2013/11/08. gr.164079.113 [pii] doi: 10.1101/gr.164079.113 24196873; PubMed Central PMCID: PMC3875850.

36. Ingraham CR, Kinoshita A, Kondo S, Yang B, Sajan S, Trout KJ, et al. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6). Nat Genet. 2006;38(11):1335–40. Epub 2006/10/17. ng1903 [pii] doi: 10.1083/ng1903 17041601; PubMed Central PMCID: PMC2082114.

37. Iwata J, Suzuki A, Pelikan RC, Ho TV, Sanchez-Lara PA, Urata M, et al. Smad4-Irf6 genetic interaction and TGFbeta-mediated IRF6 signaling cascade are crucial for palatal fusion in mice. Development. 2013;140(6):1220–30. Epub 2013/02/15. dev.089615 [pii] doi: 10.1242/dev.089615 23406900; PubMed Central PMCID: PMC3585659.

38. Wu T, Schwender H, Ruczinski I, Murray JC, Marazita ML, Munger RG, et al. Evidence of gene-environment interaction for two genes on chromosome 4 and environmental tobacco smoke in controlling the risk of nonsyndromic cleft palate. PLoS One. 2014;9(2):e88088. doi: 10.1371/journal.pone.0088088 24516586; PubMed Central PMCID: PMC3916361.

39. Leslie EJ, Liu H, Carlson JC, Shaffer JR, Feingold E, Wehby G, et al. A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3. Am J Hum Genet. 2016;98(4):744–54. doi: 10.1016/j.ajhg.2016.02.014 27018472; PubMed Central PMCID: PMC4833215.

40. Carlson JC, Nidey NL, Butali A, Buxo CJ, Christensen K, Deleyiannis FW, et al. Genome-wide interaction studies identify sex-specific risk alleles for nonsyndromic orofacial clefts. Genet Epidemiol. 2018;42(7):664–72. doi: 10.1002/gepi.22158 30277614; PubMed Central PMCID: PMC6185762.

41. Gurramkonda VB, Syed AH, Murthy J, Lakkakula B. IRF6 rs2235375 single nucleotide polymorphism is associated with isolated non-syndromic cleft palate but not with cleft lip with or without palate in South Indian population. Brazilian journal of otorhinolaryngology. 2018;84(4):473–7. doi: 10.1016/j.bjorl.2017.05.011 28712851.

42. Maguire S, Estabel J, Ingham N, Pearson S, Ryder E, Carragher DM, et al. Targeting of Slc25a21 is associated with orofacial defects and otitis media due to disrupted expression of a neighbouring gene. PLoS One. 2014;9(3):e91807. Epub 2014/03/20. doi: 10.1371/journal.pone.0091807 24642684; PubMed Central PMCID: PMC3958370.

43. Peters H, Neubuser A, Balling R. Pax genes and organogenesis: Pax9 meets tooth development. Eur J Oral Sci. 1998;106 Suppl 1:38–43. Epub 1998/04/16. 9541201.

44. Iwata J, Parada C, Chai Y. The mechanism of TGF-beta signaling during palate development. Oral Dis. 2011;17(8):733–44. Epub 2011/03/15. doi: 10.1111/j.1601-0825.2011.01806.x 21395922; PubMed Central PMCID: PMC3329177.

45. Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998;12(17):2735–47. Epub 1998/09/10. doi: 10.1101/gad.12.17.2735 9732271; PubMed Central PMCID: PMC317134.

46. Yu W, Ruest LB, Svoboda KK. Regulation of epithelial-mesenchymal transition in palatal fusion. Exp Biol Med (Maywood). 2009;234(5):483–91. Epub 2009/02/24. 0812-MR-365 [pii] doi: 10.3181/0812-MR-365 19234053.

47. Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet. 2000;24(1):18–9. doi: 10.1038/71634 10615120.

48. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2000;284(23):3043–5. Epub 2000/12/21. jsc00472 [pii]. 11122593.

49. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nat Methods. 2013;10(1):5–6. Epub 2012/12/28. nmeth.2307 [pii] doi: 10.1038/nmeth.2307 23269371.

50. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7. Epub 2016/08/30. ng.3656 [pii] doi: 10.1038/ng.3656 27571263; PubMed Central PMCID: PMC5157836.

51. Zhou X, Li D, Zhang B, Lowdon RF, Rockweiler NB, Sears RL, et al. Epigenomic annotation of genetic variants using the Roadmap Epigenome Browser. Nat Biotechnol. 2015;33(4):345–6. Epub 2015/02/19. nbt.3158 [pii] doi: 10.1038/nbt.3158 25690851; PubMed Central PMCID: PMC4467764.

52. Wang Y, Zhang B, Zhang L, An L, Xu J, Li D, et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. bioRxiv. 2017. doi: 10.1101/112268

53. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 11846609.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2019 Číslo 10

Najčítanejšie v tomto čísle

Tejto téme sa ďalej venujú…


Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Faktory ovlivňující léčbu levotyroxinem
nový kurz

Kurz originály vs. generika

Autori: MUDr. Petr Výborný, CSc., FEBO

Autori: MUDr. Jiří Horažďovský, Ph.D

Klinická farmakokinetika betablokátorů

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Nemáte účet?  Registrujte sa

Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa