#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis


Cold acclimation is a well-known adaptive process through which plants can dramatically increase their tolerance to freezing temperature. Modifications of cell wall have been recognized as a key characteristic during plant acclimation to low temperature. However, the molecular mechanism responsible for such cellular adaptation still remains a mystery. Here, we report an unexpected regulatory role of TCF1 on lignin content during cold acclimation in Arabidopsis. TCF1 is specifically induced by cold and is required for chromatin based gene regulation of cold responsive genes such as BCB (a GAP) that regulates lignin genes. Further evidence shows that reduction in lignin dramatically increases plant freezing tolerance, while lignin maintenance required for cold acclimation is regulated by TCF-mediated signaling. Thus, our study has revealed, for the first time, lignin remodeling as a key function of cold acclimation and freezing tolerance. The findings provide the first direct molecular evidence that freezing tolerance is directly related to cell wall properties during cold acclimation and extra/intercellular freezing upon and freezing/thawing process.


Vyšlo v časopise: The RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genet 11(9): e32767. doi:10.1371/journal.pgen.1005471
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1005471

Souhrn

Cold acclimation is a well-known adaptive process through which plants can dramatically increase their tolerance to freezing temperature. Modifications of cell wall have been recognized as a key characteristic during plant acclimation to low temperature. However, the molecular mechanism responsible for such cellular adaptation still remains a mystery. Here, we report an unexpected regulatory role of TCF1 on lignin content during cold acclimation in Arabidopsis. TCF1 is specifically induced by cold and is required for chromatin based gene regulation of cold responsive genes such as BCB (a GAP) that regulates lignin genes. Further evidence shows that reduction in lignin dramatically increases plant freezing tolerance, while lignin maintenance required for cold acclimation is regulated by TCF-mediated signaling. Thus, our study has revealed, for the first time, lignin remodeling as a key function of cold acclimation and freezing tolerance. The findings provide the first direct molecular evidence that freezing tolerance is directly related to cell wall properties during cold acclimation and extra/intercellular freezing upon and freezing/thawing process.


Zdroje

1. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50: 571–599.

2. Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35: 543–584.

3. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109: 15–30. 12228580

4. Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035–1040. 9023378

5. Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106. 9525853

6. Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101: 3985–3990. 15004278

7. Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17: 1043–1054. 12672693

8. Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, et al. (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281: 37636–37645. 17015446

9. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21: 972–984. doi: 10.1105/tpc.108.063958 19270186

10. Shi Y, Tian S, Hou L, Huang X, Zhang X, et al. (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24: 2578–2595. doi: 10.1105/tpc.112.098640 22706288

11. Ding Y, Li H, Zhang X, Xie Q, Gong Z, et al. (2015) OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis.http://www.sciencedirect.com/science/article/pii/S1534580714008442-cor1 Dev Cell mailto:yangshuhua@cau.edu.cn32:278–289.

12. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14: 1675–1690. 12172015

13. Zhu J, Shi H, Lee BH, Damsz B, Cheng S, et al. (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 101: 9873–9878. 15205481

14. Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, et al. (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105: 4945–4950. doi: 10.1073/pnas.0801029105 18356294

15. Moellering ER, Muthan B, Benning C (2010). Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330: 226–228. doi: 10.1126/science.1191803 20798281

16. Shi H, Ye T, Zhong B, Liu X, Jin R, Chan Z (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol 203: 554–567. doi: 10.1111/nph.12812 24739069

17. Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23: 893–902.

18. Yamada T, Kuroda K, Jitsuyama Y, Takezawa D, Arakawa K, Fujikawa S (2002) Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing. Planta 215: 770–778. 12244442

19. Thalhammer A, Bryant G, Sulpice R, Hincha DK (2014). Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, but do not stabilize chloroplast enzymes in vivo. Plant Physiol 166: 190–201. doi: 10.1104/pp.114.245399 25096979

20. Hématy K, Cherk C, Somerville S (2009). Host-pathogen warfare at the plant cell wall. Curr Opin Plant Boil 12: 406–413.

21. Szymanski DB, Cosgrove DJ (2009) Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Curr Biol 19: 800–811.

22. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, et al. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a Reactive Oxygen Species-and Jasmonic Acid-dependent process in Arabidopsis. Plant Physiol 156: 1364–1374. doi: 10.1104/pp.111.175737 21546454

23. Temple BRS, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58: 249–266. 17201690

24. Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153: 467–478. doi: 10.1104/pp.110.153940 20154095

25. Tsang DL, Edmond C, Harrington JL, Nühse TS (2011) Cell wall integrity controls root elongation via a general 1-Aminocyclopropane-1-Carboxylic Acid-dependent, Ethylene-independent pathway. Plant Physiol 156: 596–604. doi: 10.1104/pp.111.175372 21508182

26. Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, et al. (2015) An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517: 571–575. doi: 10.1038/nature14099 25533953

27. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557–1566. 12119374

28. Manfield IW, Orfila C, Mccartney L, Harholt J, Bernal AJ, et al. (2004) Novel cell wall architecture of isoxaben-habituated Arabidopsis suspension-cultured cells: global transcript profiling and cellular analysis. Plant J 40: 260–275. 15447652

29. Hamann T, Bennett M, Mansfield J, Somerville C (2009) Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J 57: 1015–1026. doi: 10.1111/j.1365-313X.2008.03744.x 19036034

30. Boorsma A, de Nobel H, ter Riet B, Bargmann B, Brul S, et al. (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21: 413–427. 15116342

31. Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol Bio Rev 69: 262.

32. Moura JC, Bonine CA, de Oliveira FVJ, Dornelas MC, Mazzafera P (2010) Abiotic and biotic stresses and changes in lignin content and composition in plants. J Integr Plant Biol 52: 360–76. doi: 10.1111/j.1744-7909.2010.00892.x 20377698

33. Le MQ, Pagter M, Hincha DK (2015) Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Plant Mol Biol 87:1–15 doi: 10.1007/s11103-014-0256-z 25311197

34. Rajashekar C, Burke MJ (1996) Freezing characteristics of rigid plant tissues (development of cell tension during extracellular freezing). Plant Physiol 111: 597–603. 12226313

35. Ball MC, Canny MJ, Huang CX, Heady RD (2004) Structural changes in acclimated and unacclimated leaves during freezing and thawing. Func Plant Biol 31: 29–40.

36. Ball MC, Canny MJ, Huang CX, Egerton JJG, Wolfe J (2006) Freeze/thaw-induced embolism depends on nadir temperature: the heterogeneous hydration hypothesis. Plant Cell Environ 29: 729–745. 17087458

37. Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46: 356–370. doi: 10.1016/j.plaphy.2007.12.009 18272377

38. Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9: e110302. doi: 10.1371/journal.pone.0110302 25330211

39. Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133: 1051–1071. 14612585

40. Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17: 2281–2295. 15980264

41. Cassan-Wang H, Goué N, Saidi MN, Legay S, Sivadon P, et al. (2013) Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front Plant Sci 11: 189.

42. Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, et al. (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc. Natl. Acad. Sci. U S A 110: 10848–10853. doi: 10.1073/pnas.1308936110 23754401

43. Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F, et al. (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77: 713–726. doi: 10.1111/tpj.12420 24372757

44. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097. 12242399

45. Ross W, Ron S (1995) Lignin Biosynthesis. Plant Cell 7:1001–1013. 12242395

46. Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65:2295–2306. doi: 10.1093/jxb/eru109 24642849

47. Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165:1491–1499. doi: 10.1016/j.jplph.2007.11.005 18242769

48. Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, et al. (2015) Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66:4317–4335. doi: 10.1093/jxb/erv269 26093023

49. Ezaki B, Sasaki K, Matsumoto H, Nakashima S (2005) Functions of two genes in aluminium (Al) stress resistance: repression of oxidative damage by the AtBCB gene and promotion of efflux of Al ions by the NtGDI1gene. J Exp Bot 56: 2661–2671. 16143720

50. Huang J, Gu M, Lai Z, Fan B, Shi K, et al. (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153: 1526–1538. doi: 10.1104/pp.110.157370 20566705

51. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, et al. (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50: 347–363. 17376166

52. Ohtsubo M, Okazaki H, Nishimoto T (1989) The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109: 1389–1397. 2677018

53. Renault L, Nassar N, Vetter I, Becker J, Klebe C, et al. (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392: 97–101. 9510255

54. Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354: 80–82. 1944575

55. Nemergut ME, Lindsay ME, Brownawell AM, Macara IG (2002) Ran-binding protein 3 links Crm1 to the Ran guanine nucleotide exchange factor. J Biol Chem 277: 17385–17388. 11932251

56. Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, et al. (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771. 15377757

57. Li HY, Wirtz D, Zheng Y (2003) A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J Cell Biol 160: 635–644. 12604592

58. Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1: 118–128. doi: 10.1093/mp/ssm012 20031919

59. Van Gysel A, Van Montagu M, Inzé D (1993) A negatively light-regulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copper-binding proteins. Gene 136: 79–85. 8294044

60. Borner GH, Lilley KS, Stevens TJ, Dupree P (2003) Identification of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A proteomic and genomic analysis. Plant Physiol 132: 568–77. 12805588

61. Mishina TE, Zeier J (2007) Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains. Physiol Plant 131: 448–461. doi: 10.1111/j.1399-3054.2007.00977.x 18251883

62. Huang X, Yang P, Ouyang X, Chen L, Deng XW (2014) Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. PLoS Genet 10: e1004218. doi: 10.1371/journal.pgen.1004218 24651064

63. Levitt J (1980) Chilling, freezing, and high temperature stress. Responses of plants to environmental stresses; London: Academic Press I: 497.

64. Sakai A, Larcher W (1987) Ecological Studies. Frost survival of plants. Responses and adaptation to freezing stress; Berlin: Springer-Verlag 62: 321.

65. Alberdi M, Corcuera LJ (1991) Cold acclimation in plants. Phytochemistry 30: 3177–3184.

66. Domon JM, Baldwin L, Acket S, Caudeville E, Arnoult S, et al. (2013) Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry 85: 51–61. doi: 10.1016/j.phytochem.2012.09.001 23079767

67. Zuther E, Schulz E, Childs LH, Hincha DK. (2012) Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Plant Cell Environ 35: 1860–1878. doi: 10.1111/j.1365-3040.2012.02522.x 22512351

68. Ji H, Wang S, Li K, Szakonyi D, Koncz C, et al. (2014) PRL1 modulates root stem cell niche activity and meristem size through WOX5 and PLTs in Arabidopsis. Plant J 81: 399–412. doi: 10.1111/tpj.12733 25438658

69. Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297: 1871–1873. 12077425

70. Tokunaga N, Sakakibara N, Umezawa T, Ito Y, Fukuda H, et al. (2005). Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 46: 224–232. 15659440

71. Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155:423–430 doi: 10.1007/BF00394471 24271974

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#