#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Functional Dissection of Regulatory Models Using Gene Expression Data of Deletion Mutants


Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN). We applied DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes) that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.


Vyšlo v časopise: Functional Dissection of Regulatory Models Using Gene Expression Data of Deletion Mutants. PLoS Genet 9(9): e32767. doi:10.1371/journal.pgen.1003757
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003757

Souhrn

Genome-wide gene expression profiles accumulate at an alarming rate, how to integrate these expression profiles generated by different laboratories to reverse engineer the cellular regulatory network has been a major challenge. To automatically infer gene regulatory pathways from genome-wide mRNA expression profiles before and after genetic perturbations, we introduced a new Bayesian network algorithm: Deletion Mutant Bayesian Network (DM_BN). We applied DM_BN to the expression profiles of 544 yeast single or double deletion mutants of transcription factors, chromatin remodeling machinery components, protein kinases and phosphatases in S. cerevisiae. The network inferred by this method identified causal regulatory and non-causal concurrent interactions among these regulators (genetically perturbed genes) that are strongly supported by the experimental evidence, and generated many new testable hypotheses. Compared to networks reconstructed by routine similarity measures or by alternative Bayesian network algorithms, the network inferred by DM_BN excels in both precision and recall. To facilitate its application in other systems, we packaged the algorithm into a user-friendly analysis tool that can be downloaded at http://www.picb.ac.cn/hanlab/DM_BN.html.


Zdroje

1. YoungRA, LeeTI, RinaldiNJ, RobertF, OdomDT, et al. (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804.

2. KouzaridesT (2002) Histone methylation in transcriptional control. Current Opinion in Genetics & Development 12: 198–209.

3. HolstegetFCP, LenstraTL, BenschopJJ, KimT, SchulzeJM, et al. (2011) The Specificity and Topology of Chromatin Interaction Pathways in Yeast. Molecular Cell 42: 536–549.

4. ArndtGM, RaponiM (2003) Double-stranded RNA-mediated gene silencing in fission yeast. Nucleic Acids Research 31: 4481–4489.

5. JacquierA (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nature Reviews Genetics 10: 833–844.

6. MoazedD (2009) Small RNAs in transcriptional gene silencing and genome defence. Nature 457: 413–420.

7. DavisRW, GiaeverG, ChuAM, NiL, ConnellyC, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.

8. Van DriesscheN, DemsarJ, BoothEO, HillP, JuvanP, et al. (2005) Epistasis analysis with global transcriptional phenotypes. Nat Genet 37: 471–477.

9. RobertsCJ, NelsonB, MartonMJ, StoughtonR, MeyerMR, et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287: 873–880.

10. HolstegeFCP, van WageningenS, KemmerenP, LijnzaadP, MargaritisT, et al. (2010) Functional Overlap and Regulatory Links Shape Genetic Interactions between Signaling Pathways. Cell 143: 991–1004.

11. DionMF, AltschulerSJ, WuLF, RandoOJ (2005) Genomic characterization reveals a simple histone H4 acetylation code. Proceedings of the National Academy of Sciences of the United States of America 102: 5501–5506.

12. IyerVR, HuZZ, KillionPJ (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nature Genetics 39: 683–687.

13. SegalE, ShapiraM, RegevA, Pe'erD, BotsteinD, et al. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics 34: 166–176.

14. TavazoieS, BeerMA (2004) Predicting gene expression from sequence. Cell 117: 185–198.

15. HughesTR, MartonMJ, JonesAR, RobertsCJ, StoughtonR, et al. (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126.

16. Pearl J (1988) Probabilistic Reasoning in Intelligent Systems. San Fransisco, CA: Morgan Kaufmann.

17. FriedmanN, LinialM, NachmanI, Pe'erD (2000) Using Bayesian networks to analyze expression data. Journal of Computational Biology 7: 601–620.

18. ChangHH, RamoniMF (2009) Transcriptional network classifiers. BMC Bioinformatics 10: S1–S17.

19. ShokatKM, FiedlerD, BrabergH, MehtaM, ChechikG, et al. (2009) Functional Organization of the S-cerevisiae Phosphorylation Network. Cell 136: 952–963.

20. Heckerman D (1999) A Tutorial on Learning with Bayesian Networks. In: Jordan M, editor. Learning in Graphical Models. Cambridge, MA: MIT Press.

21. SchwarzG (1978) Estimating the Dimension of a Model. The Annals of Statistics 6: 461–464.

22. HeckermanD, GeigerD, ChickeringDM (1995) Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning 20: 197–243.

23. Steck H (2008) Learning the Bayesian Network Structure: Dirichlet Prior vs Data. In: McAllester DA, Myllymaki P, editors. UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence. Helsinki, Finland: AUAI Press. pp. 511–518.

24. ChickeringDM (2002) The WinMine Toolkit. Microsoft

25. MargolinAA, NemenmanI, BassoK, WigginsC, StolovitzkyG, et al. (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 Suppl 1: S7.

26. RungJ, SchlittT, BrazmaA, FreivaldsK, ViloJ (2002) Building and analysing genome-wide gene disruption networks. Bioinformatics 18 Suppl 2: S202–210.

27. BachFR, JordanMI (2002) Learning Graphical Models with Mercer Kernels. Advances in Neural Information Processing Systems 15: 1009–1016.

28. MeekC (1995) Causal inference and causal explanation with background knowledge. Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence 403–410.

29. MizuguchiG, ShenXT, LandryJ, WuWH, SenS, et al. (2004) ATP-Driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303: 343–348.

30. LukE, RanjanA, FitzGeraldPC, MizuguchiG, HuangY, et al. (2010) Stepwise Histone Replacement by SWR1 Requires Dual Activation with Histone H2A.Z and Canonical Nucleosome. Cell 143: 725–736.

31. BonangelinoCJ, ChavezEM, BonifacinoJS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13: 2486–2501.

32. PosasF, TakekawaM, SaitoH (1998) Signal transduction by MAP kinase cascades in budding yeast. Curr Opin Microbiol 1: 175–182.

33. SaitoH (2010) Regulation of cross-talk in yeast MAPK signaling pathways. Current Opinion in Microbiology 13: 677–683.

34. ErredeB, GartnerA, ZhouZQ, NasmythK, AmmererG (1993) Map Kinase-Related Fus3 from Saccharomyces-Cerevisiae Is Activated by Ste7 Invitro. Nature 362: 261–264.

35. MoazedD, KistlerA, AxelrodA, RineJ, JohnsonAD (1997) Silent information regulator protein complexes in Saccharomyces cerevisiae: A SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proceedings of the National Academy of Sciences of the United States of America 94: 2186–2191.

36. KaeberleinM, McVeyM, GuarenteL (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes & Development 13: 2570–2580.

37. ShilatifardA, LeeJS, SmithE (2010) The Language of Histone Crosstalk. Cell 142: 682–685.

38. BachFR, JordanMI (2002) Kernel Independent Component Analysis. Journal of Machine Learning Research 3: 1–48.

39. CvijovicD, KlinowskiJ (1995) Taboo search - an approach to the multiple minima problem. Science 267: 664–666.

40. GiudiciP, CasteloR (2003) Improving Markov Chain Monte Carlo Model Search for Data Mining. Machine Learning 50: 127–158.

41. Koller D, Friedman N (2009) Probabilistic Graphical Models: Principles and Techniques. MIT Press.

42. ChickeringDM (1995) A Transformational Characterization of Equivalent Bayesian Network Structures. Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence 87–98.

43. JaccardP (1901) Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547–579.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#