#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Extensive Natural Epigenetic Variation at a Originated Gene


Epigenetic variation, such as heritable changes of DNA methylation, can affect gene expression and thus phenotypes, but examples of natural epimutations are few and little is known about their stability and frequency in nature. Here, we report that the gene Qua-Quine Starch (QQS) of Arabidopsis thaliana, which is involved in starch metabolism and that originated de novo recently, is subject to frequent epigenetic variation in nature. Specifically, we show that expression of this gene varies considerably among natural accessions as well as within populations directly sampled from the wild, and we demonstrate that this variation correlates negatively with the DNA methylation level of repeated sequences located within the 5′end of the gene. Furthermore, we provide extensive evidence that DNA methylation and expression variants can be inherited for several generations and are not linked to DNA sequence changes. Taken together, these observations provide a first indication that de novo originated genes might be particularly prone to epigenetic variation in their initial stages of formation.


Vyšlo v časopise: Extensive Natural Epigenetic Variation at a Originated Gene. PLoS Genet 9(4): e32767. doi:10.1371/journal.pgen.1003437
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003437

Souhrn

Epigenetic variation, such as heritable changes of DNA methylation, can affect gene expression and thus phenotypes, but examples of natural epimutations are few and little is known about their stability and frequency in nature. Here, we report that the gene Qua-Quine Starch (QQS) of Arabidopsis thaliana, which is involved in starch metabolism and that originated de novo recently, is subject to frequent epigenetic variation in nature. Specifically, we show that expression of this gene varies considerably among natural accessions as well as within populations directly sampled from the wild, and we demonstrate that this variation correlates negatively with the DNA methylation level of repeated sequences located within the 5′end of the gene. Furthermore, we provide extensive evidence that DNA methylation and expression variants can be inherited for several generations and are not linked to DNA sequence changes. Taken together, these observations provide a first indication that de novo originated genes might be particularly prone to epigenetic variation in their initial stages of formation.


Zdroje

1. RichardsEJ (2006) Inherited epigenetic variation - revisiting soft inheritance. Nat Rev Genet 7: 395–401 doi:10.1038/nrg1834.

2. DaxingerL, WhitelawE (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13: 153–162 doi:10.1038/nrg3188.

3. WeigelD, ColotV (2012) Epialleles in plant evolution. Genome Biol 13: 249 doi:10.1186/gb-2012-13-10-249.

4. LippmanZ, GendrelA-V, BlackM, VaughnMW, DedhiaN, et al. (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430: 471–476 doi:10.1038/nature02724.1.

5. KinoshitaY, SazeH, KinoshitaT, MiuraA, SoppeWJJ, et al. (2007) Control of FWA gene silencing in Arabidopsis thaliana by SINE-related direct repeats. Plant J 49: 38–45 doi:10.1111/j.1365-313X.2006.02936.x.

6. HendersonIR, JacobsenSE (2008) Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22: 1597–1606 doi:10.1101/gad.1667808.

7. BenderJ (2004) DNA methylation of the endogenous PAI genes in Arabidopsis. Cold Spring Harb Symp Quant Biol 69: 145–153 doi:10.1101/sqb.2004.69.145.

8. DurandS, BouchéN, StrandEP, LoudetO, CamilleriC (2012) Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr Biol 22: 326–331 doi:10.1016/j.cub.2011.12.054.

9. MartinA, TroadecC, BoualemA, RajabM, FernandezR, et al. (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461: 1135–1138 doi:10.1038/nature08498.

10. PaszkowskiJ, GrossniklausU (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14: 195–203 doi:10.1016/j.pbi.2011.01.002.

11. VaughnMW, TanurdzićM, LippmanZ, JiangH, CarrasquilloR, et al. (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5: e174 doi:10.1371/journal.pbio.0050174.

12. ZhangX, ShiuS, CalA, BorevitzJO (2008) Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4: e1000032 doi:10.1371/journal.pgen.1000032.

13. BeckerC, HagmannJ, MüllerJ, KoenigD, StegleO, et al. (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480: 245–249 doi:10.1038/nature10555.

14. SchmitzRJ, SchultzMD, LewseyMG, O'MalleyRC, UrichMA, et al. (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334: 369–373 doi:10.1126/science.1212959.

15. CubasP, VincentC, CoenE (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157–161 doi:10.1038/43657.

16. ManningK, TörM, PooleM, HongY, ThompsonAJ, et al. (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38: 948–952 doi:10.1038/ng1841.

17. MiuraK, AgetsumaM, KitanoH, YoshimuraA, MatsuokaM, et al. (2009) A metastable DWARF1 epigenetic mutant affecting plant stature in rice. Proc Natl Acad Sci USA 106: 11218–11223 doi: 10.1073/pnas.0901942106.

18. DonoghueMTA, KeshavaiahC, SwamidattaSH, SpillaneC (2011) Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana. BMC Evol Biol 11: 47 doi:10.1186/1471-2148-11-47.

19. LiL, FosterC, GanQ, NettletonD, JamesMG, et al. (2009) Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves. Plant J 58: 485–498 doi:10.1111/j.1365-313X.2009.03793.x.

20. SeoPJ, KimMJ, RyuJ-Y, JeongE-Y, ParkC-M (2011) Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. Nat Commun 2: 303 doi:10.1038/ncomms1303.

21. KaessmannH (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20: 1313–1326 doi:10.1101/gr.101386.109.

22. TautzD, Domazet-LošoT (2011) The evolutionary origin of orphan genes. Nat Rev Genet 12: 692–702 doi:10.1038/nrg3053.

23. CarvunisA-R, RollandT, WapinskiI, CalderwoodMA, YildirimMA, et al. (2012) Proto-genes and de novo gene birth. Nature 487: 370–374 doi:10.1038/nature11184.

24. KuriharaY, MatsuiA, KawashimaM, KaminumaE, IshidaJ, et al. (2008) Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis. Biochem Biophys Res Commun 376: 553–557 doi:10.1016/j.bbrc.2008.09.046.

25. ListerR, O'MalleyRC, Tonti-FilippiniJ, GregoryBD, BerryCC, et al. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133: 523–536 doi:10.1016/j.cell.2008.03.029.

26. JohannesF, PorcherE, TeixeiraFK, Saliba-ColombaniV, SimonM, et al. (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5: e1000530 doi:10.1371/journal.pgen.1000530.

27. Colomé-TatchéM, CortijoS, WardenaarR, MorgadoL, LahouzeB, et al. (2012) Features of the Arabidopsis recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proc Natl Acad Sci USA 109: 16240–1625 doi:10.1073/pnas.1212955109.

28. TeixeiraFK, HerediaF, SarazinA, RoudierF, BoccaraM, et al. (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323: 1600–1604 doi: 10.1126/science.1165313.

29. TeixeiraFK, ColotV (2010) Repeat elements and the Arabidopsis DNA methylation landscape. Heredity 105: 14–23 doi:10.1038/hdy.2010.52.

30. McKhannHI, CamilleriC, BérardA, BataillonT, DavidJL, et al. (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38: 193–202 doi:10.1111/j.1365-313X.2004.02034.x.

31. CubillosFA, YansouniJ, KhaliliH, BalzergueS, ElftiehS, et al. (2012) Expression variation in connected recombinant populations of Arabidopsis thaliana highlights distinct transcriptome architectures. BMC Genomics 13: 117 doi:10.1186/1471-2164-13-117.

32. JacobsenSE, MeyerowitzEM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277: 1100–1103 doi:10.1126/science.277.5329.1100.

33. ReindersJ, WulffBBH, MirouzeM, Marí-OrdóñezA, DappM, et al. (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev 23: 939–950 doi:10.1101/gad.524609.

34. FujimotoR, KinoshitaY, KawabeA, KinoshitaT, TakashimaK, et al. (2008) Evolution and control of imprinted FWA genes in the genus Arabidopsis. PLoS Genet 4: e1000048 doi:10.1371/journal.pgen.1000048.

35. FujimotoR, SasakiT, KudohH, TaylorJM, KakutaniT, et al. (2011) Epigenetic variation in the FWA gene within the genus Arabidopsis. Plant J 66: 831–843 doi:10.1111/j.1365-313X.2011.04549.x.

36. SimonM, SimonA, MartinsF, BotranL, TisnéS, et al. (2012) DNA fingerprinting and new tools for fine-scale discrimination of Arabidopsis thaliana accessions. Plant J 69: 1094–1101 doi:10.1111/j.1365-313X.2011.04852.x.

37. KronholmI, LoudetO, MeauxJD (2010) Influence of mutation rate on estimators of genetic differentiation - lessons from Arabidopsis thaliana. BMC Genet 11: 33 doi: 10.1186/1471-2156-11-33.

38. KleinboeltingN, HuepG, KloetgenA, ViehoeverP, WeisshaarB (2012) GABI-Kat Simple Search: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 40: D1211–D1215 doi:10.1093/nar/gkr1047.

39. WoodyST, Austin-PhillipsS, AmasinoRM, KrysanPJ (2007) The WiscDsLox T-DNA collection: an Arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res 120: 157–165 doi:10.1007/s10265-006-0048-x.

40. VongsA, KakutaniT, MartienssenRA, RichardsEJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: 1926–1928.

41. XieZ, JohansenLK, GustafsonAM, KasschauKD, LellisAD, et al. (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2: E104 doi:10.1371/journal.pbio.0020104.

42. Oñate-SánchezL, Vicente-CarbajosaJ (2008) DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Res Notes 1: 93 doi:10.1186/1756-0500-1-93.

43. WittkoppPJ, HaerumBK, ClarkAG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430: 85–88 doi:10.1038/nature02698.

44. ZhangX, RichardsEJ, BorevitzJO (2007) Genetic and epigenetic dissection of cis regulatory variation. Curr Opin Plant Biol 10: 142–148 doi:10.1016/j.pbi.2007.02.002.

45. MoghaddamAB, RoudierF, SeifertM, BerardC, MagnietteMLM, et al. (2011) Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J 67: 691–700 doi: 10.1111/j.1365-313X.2011.04628.x.

46. Seifert M, Banaei A, Grosse I, Stricken M (2009) Array-based comparison of Arabidopsis ecotypes using hidden Markov models. In: Encarnação P, Veloso A, editors. BIOSIGNALS 2009. Portugal: INSTICC Press. pp. 3–11.

47. Cortijo S, Wardenaar R, Colome-Tatche M, Johannes F, Colot V (2012) Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. In: McKeown PC and Spillane C, editors. Treasuring Exceptions: Plant Epigenetics and Epigenomics. New Jersey: Humana Press. In press

48. Martin-Magniette ML, Mary-HuardT, BerardC, RobinC (2008) ChIPmix: mixture model of regressions for two-color ChIPchip analysis. Bioinformatics 24: I181–I186 doi:10.1093/bioinformatics/btn280.

49. JakobssonM, HagenbladJ, TavaréS, SällT, HalldénC, Lind-HalldénC, NordborgM (2006) A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. Mol Biol Evol 23: 1217–1231 doi:10.1093/molbev/msk006.

50. NeiM, GojoboritT (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418–426.

51. BuisineN, QuenesvilleH, ColotV (2008) Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets. Genomics 91: 467–475 doi: 10.1016/j.ygeno.2008.01.005.

52. AhmedI, SarazinA, BowlerC, ColotV, QuenesvilleH (2011) Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Res 39: 1–13 doi: 10.1093/nar/gkr324.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#