#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Coordinated Cell Type–Specific Epigenetic Remodeling in Prefrontal Cortex Begins before Birth and Continues into Early Adulthood


Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type–specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation—H3 with trimethylated lysine 4 (H3K4me3)—in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax) and multiple Signal Transducer and Activator of Transcription (STAT) motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1) recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal cortex from the late prenatal period to early adolescence, which is linked to cis-regulatory sequences around transcription start sites.


Vyšlo v časopise: Coordinated Cell Type–Specific Epigenetic Remodeling in Prefrontal Cortex Begins before Birth and Continues into Early Adulthood. PLoS Genet 9(4): e32767. doi:10.1371/journal.pgen.1003433
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003433

Souhrn

Development of prefrontal and other higher-order association cortices is associated with widespread changes in the cortical transcriptome, particularly during the transitions from prenatal to postnatal development, and from early infancy to later stages of childhood and early adulthood. However, the timing and longitudinal trajectories of neuronal gene expression programs during these periods remain unclear in part because of confounding effects of concomitantly occurring shifts in neuron-to-glia ratios. Here, we used cell type–specific chromatin sorting techniques for genome-wide profiling of a histone mark associated with transcriptional regulation—H3 with trimethylated lysine 4 (H3K4me3)—in neuronal chromatin from 31 subjects from the late gestational period to 80 years of age. H3K4me3 landscapes of prefrontal neurons were developmentally regulated at 1,157 loci, including 768 loci that were proximal to transcription start sites. Multiple algorithms consistently revealed that the overwhelming majority and perhaps all of developmentally regulated H3K4me3 peaks were on a unidirectional trajectory defined by either rapid gain or loss of histone methylation during the late prenatal period and the first year after birth, followed by similar changes but with progressively slower kinetics during early and later childhood and only minimal changes later in life. Developmentally downregulated H3K4me3 peaks in prefrontal neurons were enriched for Paired box (Pax) and multiple Signal Transducer and Activator of Transcription (STAT) motifs, which are known to promote glial differentiation. In contrast, H3K4me3 peaks subject to a progressive increase in maturing prefrontal neurons were enriched for activating protein-1 (AP-1) recognition elements that are commonly associated with activity-dependent regulation of neuronal gene expression. We uncovered a developmental program governing the remodeling of neuronal histone methylation landscapes in the prefrontal cortex from the late prenatal period to early adolescence, which is linked to cis-regulatory sequences around transcription start sites.


Zdroje

1. RubensteinJLR (2011) Annual Research Review: Development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry 52: 339–355 doi:10.1111/j.1469-7610.2010.02307.x.

2. SupekarK, MenonV (2012) Developmental maturation of dynamic causal control signals in higher-order cognition: a neurocognitive network model. PLoS Comput Biol 8: e1002374 doi:10.1371/journal.pcbi.1002374.

3. PetanjekZ, JudašM, ŠimicG, RasinMR, UylingsHBM, et al. (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci USA 108: 13281–13286 doi:10.1073/pnas.1105108108.

4. SomelM, FranzH, YanZ, LorencA, GuoS, et al. (2009) Transcriptional neoteny in the human brain. Proc Natl Acad Sci USA 106: 5743–5748 doi:10.1073/pnas.0900544106.

5. ColantuoniC, LipskaBK, YeT, HydeTM, TaoR, et al. (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478: 519–523 doi:10.1038/nature10524.

6. HarrisLW, LockstoneHE, KhaitovichP, WeickertCS, WebsterMJ, et al. (2009) Gene expression in the prefrontal cortex during adolescence: implications for the onset of schizophrenia. BMC Med Genomics 2: 28 doi:10.1186/1755-8794-2-28.

7. GeW-P, MiyawakiA, GageFH, JanYN, JanLY (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484: 376–380 doi:10.1038/nature10959.

8. ChristensenJR, LarsenKB, LisanbySH, ScaliaJ, ArangoV, et al. (2007) Neocortical and hippocampal neuron and glial cell numbers in the rhesus monkey. Anat Rec (Hoboken) 290: 330–340 doi:10.1002/ar.20504.

9. CheungI, ShulhaHP, JiangY, MatevossianA, WangJ, et al. (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc Natl Acad Sci USA 107: 8824–8829 doi:10.1073/pnas.1001702107.

10. ShulhaHP, CheungI, WhittleC, WangJ, VirgilD, et al. (2011) Epigenetic Signatures of Autism: Trimethylated H3K4 Landscapes in Prefrontal Neurons. Arch Gen Psychiatry doi:10.1001/archgenpsychiatry.2011.151.

11. BarreraLO, LiZ, SmithAD, ArdenKC, CaveneeWK, et al. (2008) Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res 18: 46–59 doi:10.1101/gr.6654808.

12. GuentherMG, LevineSS, BoyerLA, JaenischR, YoungRA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130: 77–88 doi:10.1016/j.cell.2007.05.042.

13. GuentherMG, JennerRG, ChevalierB, NakamuraT, CroceCM, et al. (2005) Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci USA 102: 8603–8608 doi:10.1073/pnas.0503072102.

14. MaunakeaAK, NagarajanRP, BilenkyM, BallingerTJ, D'SouzaC, et al. (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466: 253–257 doi:10.1038/nature09165.

15. ShilatifardA (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Current opinion in cell biology 20: 341–348 doi:10.1016/j.ceb.2008.03.019.

16. ShilatifardA (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81: 65–95 doi:10.1146/annurev-biochem-051710-134100.

17. RandoOJ, ChangHY (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78: 245–271 doi:10.1146/annurev.biochem.78.071107.134639.

18. ZhangY, LiuT, MeyerCA, EeckhouteJ, JohnsonDS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137 doi:10.1186/gb-2008-9-9-r137.

19. HuangDW, ShermanBT, LempickiRA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44 doi:doi:10.1038/nprot.2008.211.

20. BergslandM, WermeM, MalewiczM, PerlmannT, MuhrJ (2006) The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 20: 3475–3486 doi:10.1101/gad.403406.

21. VlachosA, KorkotianE, SchonfeldE, CopanakiE, DellerT, et al. (2009) Synaptopodin regulates plasticity of dendritic spines in hippocampal neurons. J Neurosci 29: 1017–1033 doi:10.1523/JNEUROSCI.5528-08.2009.

22. DellerT, Bas OrthC, Del TurcoD, VlachosA, BurbachGJ, et al. (2007) A role for synaptopodin and the spine apparatus in hippocampal synaptic plasticity. Ann Anat 189: 5–16.

23. LeblondCS, HeinrichJ, DelormeR, ProepperC, BetancurC, et al. (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8: e1002521 doi:10.1371/journal.pgen.1002521.

24. SchmeisserMJ, EyE, WegenerS, BockmannJ, StempelAV, et al. (2012) Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486: 256–260 doi:10.1038/nature11015.

25. Gauthier-FisherA, LinDC, GreeveM, KaplanDR, RottapelR, et al. (2009) Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat Neurosci 12: 735–744 doi:10.1038/nn.2339.

26. MulyEC, NairnAC, GreengardP, RainnieDG (2008) Subcellular distribution of the Rho-GEF Lfc in primate prefrontal cortex: effect of neuronal activation. J Comp Neurol 508: 927–939 doi:10.1002/cne.21703.

27. MaystadtI, RezsöhazyR, BarkatsM, DuqueS, VannuffelP, et al. (2007) The nuclear factor kappaB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset. Am J Hum Genet 81: 67–76 doi:10.1086/518900.

28. LealK, MochidaS, ScheuerT, CatterallWA (2012) Fine-tuning synaptic plasticity by modulation of Ca(V)2.1 channels with Ca2+ sensor proteins. Proc Natl Acad Sci USA 109: 17069–17074 doi:10.1073/pnas.1215172109.

29. SudoK, ItoH, IwamotoI, MorishitaR, AsanoT, et al. (2007) SEPT9 sequence alternations causing hereditary neuralgic amyotrophy are associated with altered interactions with SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum Mutat 28: 1005–1013 doi:10.1002/humu.20554.

30. MasonHA, RakowieckiSM, GridleyT, FishellG (2006) Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 28: 49–57 doi:10.1159/000090752.

31. DueringM, ZierenN, HervéD, JouventE, ReyesS, et al. (2011) Strategic role of frontal white matter tracts in vascular cognitive impairment: a voxel-based lesion-symptom mapping study in CADASIL. Brain : a journal of neurology 134: 2366–2375 doi:10.1093/brain/awr169.

32. Abu-KhalilA, FuL, GroveEA, ZecevicN, GeschwindDH (2004) Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J Comp Neurol 474: 276–288 doi:10.1002/cne.20112.

33. KowaraR, MoralejaKL, ChakravarthyB (2008) PLA(2) signaling is involved in calpain-mediated degradation of synaptic dihydropyrimidinase-like 3 protein in response to NMDA excitotoxicity. Neurosci Lett 430: 197–202 doi:10.1016/j.neulet.2007.10.036.

34. AidenAP, RiveraMN, RheinbayE, KuM, CoffmanEJ, et al. (2010) Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. Cell Stem Cell 6: 591–602 doi:10.1016/j.stem.2010.03.016.

35. AdliM, ZhuJ, BernsteinBE (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat Meth 7: 615–618 doi:10.1038/nmeth.1478.

36. SiegmundKD, ConnorCM, CampanM, LongTI, WeisenbergerDJ, et al. (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS ONE 2: e895 doi:10.1371/journal.pone.0000895.

37. NumataS, YeT, HydeTM, Guitart-NavarroX, TaoR, et al. (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90: 260–272 doi:10.1016/j.ajhg.2011.12.020.

38. McNultySE, BarrettRM, Vogel-CierniaA, MalvaezM, HernandezN, et al. (2012) Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long-term memory. Learn Mem 19: 588–592 doi:10.1101/lm.026385.112.

39. KorbE, FinkbeinerS (2011) Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 34: 591–598 doi:10.1016/j.tins.2011.08.007.

40. LeussisMP, Berry-ScottEM, SaitoM, JhuangH, de HaanG, et al. (2012) The ANK3 Bipolar Disorder Gene Regulates Psychiatric-Related Behaviors That Are Modulated by Lithium and Stress. Biol Psychiatry doi:10.1016/j.biopsych.2012.10.016.

41. Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, et al.. (2012) GABAA Receptor Subunit Mutations and Genetic Epilepsies. 4(null) ed. Bethesda (MD): National Center for Biotechnology Information (US).

42. FengY, KapornaiK, KissE, TamásZ, MayerL, et al. (2010) Association of the GABRD gene and childhood-onset mood disorders. Genes Brain Behav 9: 668–672 doi:10.1111/j.1601-183X.2010.00598.x.

43. FrithMC, FuY, YuL, ChenJ-F, HansenU, et al. (2004) Detection of functional DNA motifs via statistical over-representation. Nucleic Acids Res 32: 1372–1381 doi:10.1093/nar/gkh299.

44. MatysV, FrickeE, GeffersR, GösslingE, HaubrockM, et al. (2003) TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378.

45. FontanaX, HristovaM, Da CostaC, PatodiaS, TheiL, et al. (2012) c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J Cell Biol 198: 127–141 doi:10.1083/jcb.201205025.

46. BatistaMF, LewisKE (2008) Pax2/8 act redundantly to specify glycinergic and GABAergic fates of multiple spinal interneurons. Dev Biol 323: 88–97 doi:10.1016/j.ydbio.2008.08.009.

47. GeorgalaPA, CarrCB, PriceDJ (2011) The role of Pax6 in forebrain development. Dev Neurobiol 71: 690–709 doi:10.1002/dneu.20895.

48. GoodeDK, ElgarG (2009) The PAX258 gene subfamily: a comparative perspective. Dev Dyn 238: 2951–2974 doi:10.1002/dvdy.22146.

49. BaubetV, XiangC, MolczanA, RoccograndiL, MelamedS, et al. (2012) Rp58 is essential for the growth and patterning of the cerebellum and for glutamatergic and GABAergic neuron development. Development 139: 1903–1909 doi:10.1242/dev.075606.

50. ChennA (2009) A top-NOTCH way to make astrocytes. Dev Cell 16: 158–159 doi:10.1016/j.devcel.2009.01.019.

51. NamihiraM, KohyamaJ, SemiK, SanosakaT, DeneenB, et al. (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16: 245–255 doi:10.1016/j.devcel.2008.12.014.

52. CoskunV, ZhaoJ, SunYE (2007) Neurons or Glia? Can SHP2 Know It All? Science Signaling 2007: pe58 doi:10.1126/stke.4102007pe58.

53. HanY, HanD, YanZ, Boyd-KirkupJD, GreenCD, et al. (2012) Stress-associated H3K4 methylation accumulates during postnatal development and aging of Rhesus macaque brain. Aging Cell doi:10.1111/acel.12007.

54. HuangH-S, MatevossianA, WhittleC, KimSY, SchumacherA, et al. (2007) Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters. J Neurosci 27: 11254–11262 doi:10.1523/JNEUROSCI.3272-07.2007.

55. KanoS, ColantuoniC, HanF, ZhouZ, YuanQ, et al. (2012) Genome-wide profiling of multiple histone methylations in olfactory cells: further implications for cellular susceptibility to oxidative stress in schizophrenia. Molecular Psychiatry doi:10.1038/mp.2012.120.

56. ErnstC, ChenES, TureckiG (2009) Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Molecular Psychiatry 14: 830–832 doi:10.1038/mp.2009.35.

57. RothTL, SweattJD (2011) Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 52: 398–408 doi:10.1111/j.1469-7610.2010.02282.x.

58. LabrieV, PaiS, PetronisA (2012) Epigenetics of major psychosis: progress, problems and perspectives. Trends Genet 28: 427–435 doi:10.1016/j.tig.2012.04.002.

59. KontkanenO, LaksoM, WongG, CastrénE (2002) Chronic antipsychotic drug treatment induces long-lasting expression of fos and jun family genes and activator protein 1 complex in the rat prefrontal cortex. Neuropsychopharmacology 27: 152–162 doi:10.1016/S0893-133X(02)00289-0.

60. CovingtonHE, LoboMK, MazeI, VialouV, HymanJM, et al. (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30: 16082–16090 doi:10.1523/JNEUROSCI.1731-10.2010.

61. JiangY, MatevossianA, HuangH-S, StraubhaarJ, AkbarianS (2008) Isolation of neuronal chromatin from brain tissue. BMC Neurosci 9: 42 doi:10.1186/1471-2202-9-42.

62. MatevossianA, AkbarianS (2008) Neuronal nuclei isolation from human postmortem brain tissue. J Vis Exp doi:10.3791/914.

63. ConnorC, CheungI, SimonA, JakovcevskiM, WengZ, et al. (2010) A simple method for improving the specificity of anti-methyl histone antibodies. Epigenetics : official journal of the DNA Methylation Society 5: 392–395.

64. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25 doi:10.1186/gb-2009-10-3-r25.

65. HuangH-S, MatevossianA, JiangY, AkbarianS (2006) Chromatin immunoprecipitation in postmortem brain. J Neurosci Methods 156: 284–292 doi:10.1016/j.jneumeth.2006.02.018.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 4
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#