#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Variants Induce Differential Protection to Viruses in : A Phenotypic and Phylogenomic Analysis


Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups — wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ∼21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.


Vyšlo v časopise: Variants Induce Differential Protection to Viruses in : A Phenotypic and Phylogenomic Analysis. PLoS Genet 9(12): e32767. doi:10.1371/journal.pgen.1003896
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003896

Souhrn

Wolbachia are intracellular bacterial symbionts that are able to protect various insect hosts from viral infections. This tripartite interaction was initially described in Drosophila melanogaster carrying wMel, its natural Wolbachia strain. wMel has been shown to be genetically polymorphic and there has been a recent change in variant frequencies in natural populations. We have compared the antiviral protection conferred by different wMel variants, their titres and influence on host longevity, in a genetically identical D. melanogaster host. The phenotypes cluster the variants into two groups — wMelCS-like and wMel-like. wMelCS-like variants give stronger protection against Drosophila C virus and Flock House virus, reach higher titres and often shorten the host lifespan. We have sequenced and assembled the genomes of these Wolbachia, and shown that the two phenotypic groups are two monophyletic groups. We have also analysed a virulent and over-replicating variant, wMelPop, which protects D. melanogaster even better than the closely related wMelCS. We have found that a ∼21 kb region of the genome, encoding eight genes, is amplified seven times in wMelPop and may be the cause of its phenotypes. Our results indicate that the more protective wMelCS-like variants, which sometimes have a cost, were replaced by the less protective but more benign wMel-like variants. This has resulted in a recent reduction in virus resistance in D. melanogaster in natural populations worldwide. Our work helps to understand the natural variation in wMel and its evolutionary dynamics, and inform the use of Wolbachia in arthropod-borne disease control.


Zdroje

1. MoranN, McCutcheonJ, NakabachiA (2008) Genomics and Evolution of Heritable Bacterial Symbionts. Annu Rev Genet 42: 165–190 doi:10.1146/annurev.genet.41.110306.130119

2. AxelrodR, HamiltonWD (1981) The evolution of cooperation. Science 211: 1390–1396.

3. TurelliM (1994) Evolution of Incompatibility-Inducing Microbes and Their Hosts. Evolution 48: 1500–1513.

4. HoffmannAA, HercusM, DagherH (1998) Population dynamics of the Wolbachia infection causing cytoplasmic incompatibility in Drosophila melanogaster. Genetics 148: 221–231.

5. EngelstaedterJ, HurstGDD (2009) The Ecology and Evolution of Microbes that Manipulate Host Reproduction. Annu Rev Ecol Evol S 40: 127–149 doi:10.1146/annurev.ecolsys.110308.120206

6. JaenikeJ (2012) Population genetics of beneficial heritable symbionts. Trends Ecol Evol 27: 226–232 doi:10.1016/j.tree.2011.10.005

7. HaineER (2008) Symbiont-mediated protection. Proc Biol Sci 275: 353–361 doi:10.1098/rspb.2007.1211

8. LittmanDR, PamerEG (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10: 311–323 doi:10.1016/j.chom.2011.10.004

9. OliverKM, RussellJA, MoranNA, HunterMS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100: 1803–1807 doi:10.1073/pnas.0335320100

10. JaenikeJ, UncklessR, CockburnSN, BoelioLM, PerlmanSJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329: 212–215 doi:10.1126/science.1188235

11. XieJ, VilchezI, MateosM (2010) Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS ONE 5: e12149 doi:10.1371/journal.pone.0012149

12. TeixeiraL, FerreiraA, AshburnerM (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6: e1000002 doi:10.1371/journal.pbio.1000002

13. Gil-TurnesMS, HayME, FenicalW (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246: 116–118.

14. HedgesLM, BrownlieJC, O'NeillSL, JohnsonKN (2008) Wolbachia and Virus Protection in Insects. Science 322: 702–702 doi:10.1126/science.1162418

15. BartonES, WhiteDW, CathelynJS, Brett-McClellanKA, EngleM, et al. (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447: 326–329 doi:10.1038/nature05762

16. GrivelJC, ItoY, FagàG, SantoroF, ShaheenF, et al. (2001) Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat Med 7: 1232–1235 doi:10.1038/nm1101-1232

17. ScarboroughCL, FerrariJ, GodfrayHCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310: 1781 doi:10.1126/science.1120180

18. KaltenpothM, GöttlerW, HerznerG, StrohmE (2005) Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol 15: 475–479 doi:10.1016/j.cub.2004.12.084

19. WeissBL, WangJ, AksoyS (2011) Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol 9: e1000619 doi:10.1371/journal.pbio.1000619

20. CirimotichCM, DongY, ClaytonAM, SandifordSL, Souza-NetoJA, et al. (2011) Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332: 855–858 doi:10.1126/science.1201618

21. OliverKM, CamposJ, MoranNA, HunterMS (2008) Population dynamics of defensive symbionts in aphids. Proc Biol Sci 275: 293–299 doi:10.1098/rspb.2007.1192

22. ZugR, HammersteinP (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7: e38544 doi:10.1371/journal.pone.0038544

23. OsborneSE, LeongYS, O'NeillSL, JohnsonKN (2009) Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog 5: e1000656 doi:10.1371/journal.ppat.1000656

24. GlaserRL, MeolaMA (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5: e11977 doi:10.1371/journal.pone.0011977

25. BianG, XuY, LuP, XieY, XiZ (2010) The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6: e1000833 doi:10.1371/journal.ppat.1000833

26. LongdonB, FabianDK, HurstGD, JigginsFM (2012) Male-killing Wolbachia do not protect Drosophila bifasciata against viral infection. BMC Microbiol 12 Suppl 1: S8 doi:10.1186/1471-2180-12-S1-S8

27. StouthamerR, BreeuwerJA, HurstGD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53: 71–102 doi:10.1146/annurev.micro.53.1.71

28. WerrenJH, BaldoL, ClarkME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741–751 doi:10.1038/nrmicro1969

29. FentonA, JohnsonKN, BrownlieJC, HurstGDD (2011) Solving the WolbachiaParadox: Modeling the Tripartite Interaction between Host, Wolbachia, and a Natural Enemy. Am Nat 178: 333–342 doi:10.1086/661247

30. MoreiraLA, Iturbe-OrmaetxeI, JefferyJA, LuG, PykeAT, et al. (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278 doi:10.1016/j.cell.2009.11.042

31. WalkerT, JohnsonPH, MoreiraLA, Iturbe-OrmaetxeI, FrentiuFD, et al. (2011) The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450–453 doi:doi:10.1038/nature10355

32. van den HurkAF, Hall-MendelinS, PykeAT, FrentiuFD, McElroyK, et al. (2012) Impact of Wolbachia on Infection with Chikungunya and Yellow Fever Viruses in the Mosquito Vector Aedes aegypti. PLoS Neglected Tropical Diseases 6: e1892 doi:10.1371/journal.pntd.0001892

33. BlagroveMSC, Arias-GoetaC, FaillouxA-B, SinkinsSP (2012) Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci USA 109: 255–260 doi:10.1073/pnas.1112021108

34. KambrisZ, CookPE, PhucHK, SinkinsSP (2009) Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326: 134–136 doi:10.1126/science.1177531

35. HughesGL, KogaR, XueP, FukatsuT, RasgonJL (2011) Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in anopheles gambiae. PLoS Pathog 7: e1002043 doi:10.1371/journal.ppat.1002043

36. KambrisZ, BlagboroughAM, PintoSB, BlagroveMSC, GodfrayHCJ, et al. (2010) Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog 6: e1001143 doi:10.1371/journal.ppat.1001143

37. HoffmannAA, MontgomeryBL, PopoviciJ, Iturbe-OrmaetxeI, JohnsonPH, et al. (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454–457 doi:10.1038/nature10356

38. Iturbe-OrmaetxeI, WalkerT, O NeillSL (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12: 508–518 doi:10.1038/embor.2011.84

39. OliverKM, DegnanPH, HunterMS, MoranNA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325: 992–994 doi:10.1126/science.1174463

40. RieglerM, SidhuM, MillerWJ, O'NeillSL (2005) Evidence for a Global Wolbachia Replacement in Drosophila melanogaster. Current Biology 15: 1428–1433 doi:10.1016/j.cub.2005.06.069

41. NunesMDS, NolteV, SchlöttererC (2008) Nonrandom Wolbachia infection status of Drosophila melanogaster strains with different mtDNA haplotypes. Mol Biol Evol 25: 2493–2498 doi:10.1093/molbev/msn199

42. RichardsonMF, WeinertLA, WelchJJ, LinheiroRS, MagwireMM, et al. (2012) Population Genomics of the Wolbachia Endosymbiont in Drosophila melanogaster. PLoS Genet 8: e1003129 doi:10.1371/journal.pgen.1003129

43. HoldenPR, JonesP, BrookfieldJF (1993) Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet Res 62: 23–29.

44. MateosM, CastrezanaSJ, NankivellBJ, EstesAM, MarkowTA, et al. (2006) Heritable endosymbionts of Drosophila. Genetics 174: 363–376 doi:10.1534/genetics.106.058818

45. SolignacM, VautrinD, RoussetF (1994) Widespread Occurrence of the Proteobacteria Wolbachia and Partial Cytoplasmic Incompatibility in Drosophila melanogaster. Cr Acad Sci Iii-Vie 317: 461–470.

46. HoffmannAA (1988) Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 48: 61–67 doi:10.1111/j.1570-7458.1988.tb02299.x

47. HoffmannAA, ClancyDJ, MertonE (1994) Cytoplasmic incompatibility in Australian populations of Drosophila melanogaster. Genetics 136: 993–999.

48. IlinskyYY, ZakharovIK (2007) The endosymbiont Wolbachia in Eurasian populations of Drosophila melanogaster. Russ J Genet+ 43: 748–756 doi:10.1134/S102279540707006X

49. VerspoorRL, HaddrillPR (2011) Genetic Diversity, Population Structure and Wolbachia Infection Status in a Worldwide Sample of Drosophila melanogaster and D. simulans Populations. PLoS ONE 6: e26318 doi:10.1371/journal.pone.0026318

50. IlinskyY (2013) Coevolution of Drosophila melanogaster mtDNA and Wolbachia Genotypes. PLoS ONE 8: e54373 doi:10.1371/journal.pone.0054373

51. MackayTFC, RichardsS, StoneEA, BarbadillaA, AyrolesJF, et al. (2012) The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178 doi:10.1038/nature10811

52. VenetiZ, ClarkME, ZabalouS, KarrTL, SavakisC, et al. (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164: 545–552.

53. IlinskyYY, ZakharovIK (2011) Cytoplasmic incompatibility in Drosophila melanogaster is caused by different Wolbachia genotypes. Russ J Genet Appl Res 1: 458–462 doi:10.1134/S2079059711020031

54. MinKT, BenzerS (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94: 10792–10796.

55. ReynoldsKT, ThomsonLJ, HoffmannAA (2003) The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 164: 1027–1034.

56. McGrawEA, MerrittDJ, DrollerJN, O'NeillSL (2002) Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci USA 99: 2918–2923 doi:10.1073/pnas.052466499

57. RieglerM, Iturbe-OrmaetxeI, WoolfitM, MillerWJ, O'NeillSL (2012) Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia. BMC Microbiol 12 Suppl 1: S12 doi:10.1186/1471-2180-12-S1-S12

58. WuM, SunLV, VamathevanJ, RieglerM, DeboyR, et al. (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2: E69 doi:10.1371/journal.pbio.0020069

59. RyderE, BlowsF, AshburnerM, Bautista-LlacerR, CoulsonD, et al. (2004) The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167: 797–813 doi:10.1534/genetics.104.026658

60. Brun G, Plus N (1978) The viruses of Drosophila melanogaster. Ashburner M, Wright T, editors. Genetics and Biology of Drosophila. New York: Academic Press. pp. 625–702

61. JohnsonKN, ChristianPD (1998) The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family. J Gen Virol 79: 191–203.

62. CoxDR (1972) Regression models and life-tables. Journal of the Royal Statistical Society Series B (Methodological) 34: 187–220.

63. DeddoucheS, MattN, BuddA, MuellerS, KempC, et al. (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in Drosophila. Nat Immunol 9: 1425–1432 doi:10.1038/ni.1664

64. Ball LA, Johnson KN (1998) Nodaviruses of Insects. Ball LA, Miller LK, editors. The insect viruses. New York: Plenum Press. pp. 225–268

65. DearingSC, ScottiPD, WigleyPJ, DhanaSD (1980) A small RNA virus isolated from the grass grub, Costelytra zealandica (Coleoptera, Scarabaeidae). New Zeal J Zool 7: 267–269.

66. SchneiderDS, AyresJS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8: 889–895 doi:10.1038/nri2432

67. ClancyDJ (2008) Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background. Aging Cell 7: 795–804 doi:10.1111/j.1474-9726.2008.00428.x

68. McMenimanCJ, LaneRV, CassBN, FongAWC, SidhuM, et al. (2009) Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti. Science 323: 141–144 doi:10.1126/science.1165326

69. Iturbe-OrmaetxeI, WoolfitM, RancèsE, DuplouyA, O'NeillSL (2011) A simple protocol to obtain highly pure Wolbachia endosymbiont DNA for genome sequencing. J Microbiol Methods 84: 134–136 doi:10.1016/j.mimet.2010.10.019

70. AbyzovA, UrbanAE, SnyderM, GersteinM (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21: 974–984 doi:10.1101/gr.114876.110

71. CordauxR, PichonS, LingA, PerezP, DelaunayC, et al. (2008) Intense Transpositional Activity of Insertion Sequences in an Ancient Obligate Endosymbiont. Mol Biol Evol 25: 1889–1896 doi:10.1093/molbev/msn134

72. Iturbe-OrmaetxeI, BurkeGR, RieglerM, O'NeillSL (2005) Distribution, expression, and motif variability of ankyrin domain genes in Wolbachia pipientis. J Bacteriol 187: 5136–5145 doi:10.1128/JB.187.15.5136-5145.2005

73. KlassonL, KambrisZ, CookPE, WalkerT, SinkinsSP (2009) Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 10: 33 doi:10.1186/1471-2164-10-33

74. WoolfitM, Iturbe-OrmaetxeI, McGrawEA, O'NeillSL (2009) An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 26: 367–374 doi:10.1093/molbev/msn253

75. SioziosS, IoannidisP, KlassonL, AnderssonSGE, BraigHR, et al. (2013) The Diversity and Evolution of Wolbachia Ankyrin Repeat Domain Genes. PLoS ONE 8: e55390 doi:10.1371/journal.pone.0055390

76. KlassonL, WalkerT, SebaihiaM, SandersMJ, QuailMA, et al. (2008) Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 25: 1877–1887 doi:10.1093/molbev/msn133

77. KentBN, SalichosL, GibbonsJG, RokasA, NewtonILG, et al. (2011) Complete bacteriophage transfer in a bacterial endosymbiont (Wolbachia) determined by targeted genome capture. Genome Biol Evol 3: 209–218 doi:10.1093/gbe/evr007

78. KorochkinaS, BarreauC, PradelG, JefferyE, LiJ, et al. (2006) A mosquito-specific protein family includes candidate receptors for malaria sporozoite invasion of salivary glands. Cell Microbiol 8: 163–175 doi:10.1111/j.1462-5822.2005.00611.x

79. ColbourneJK, PfrenderME, GilbertD, ThomasWK, TuckerA, et al. (2011) The ecoresponsive genome of Daphnia pulex. Science 331: 555–561 doi:10.1126/science.1197761

80. KlassonL, WestbergJ, SapountzisP, NäslundK, LutnaesY, et al. (2009) The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc Natl Acad Sci USA 106: 5725–5730 doi:10.1073/pnas.0810753106

81. AnderssonDI, HughesD (2009) Gene amplification and adaptive evolution in bacteria. Annu Rev Ecol Evol S 43: 167–195 doi:10.1146/annurev-genet-102108-134805

82. MekalanosJJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35: 253–263.

83. KrollJS, LoyndsBM, MoxonER (1991) The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol Microbiol 5: 1549–1560.

84. MavinguiP, LaeremansT, FloresM, RomeroD, Martínez-RomeroE, et al. (1998) Genes essential for nod factor production and nodulation are located on a symbiotic amplicon (AMPRtrCFN299pc60) in Rhizobium tropici. J Bacteriol 180: 2866–2874.

85. EldeNC, ChildSJ, EickbushMT, KitzmanJO, RogersKS, et al. (2012) Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150: 831–841 doi:10.1016/j.cell.2012.05.049

86. IshmaelN, Dunning HotoppJC, IoannidisP, BiberS, SakamotoJ, et al. (2009) Extensive genomic diversity of closely related Wolbachia strains. Microbiology (Reading, Engl) 155: 2211–2222 doi:10.1099/mic.0.027581-0

87. SalzbergSL, Dunning HotoppJC, DelcherAL, PopM, SmithDR, et al. (2005) Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol 6: R23 doi:10.1186/gb-2005-6-3-r23

88. KingJG, VernickKD, HillyerJF (2011) Members of the Salivary Gland Surface Protein (SGS) Family Are Major Immunogenic Components of Mosquito Saliva. Journal of Biological Chemistry 286: 40824–40834 doi:10.1074/jbc.M111.280552

89. AyresJS, SchneiderDS (2008) A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol 6: 2764–2773 doi:10.1371/journal.pbio.0060305

90. VenetiZ, ClarkME, ZabalouS, KarrTL, SavakisC, et al. (2003) Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164: 545–552.

91. KondoN, ShimadaM, FukatsuT (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol Lett 1: 488–491 doi:10.1098/rsbl.2005.0340

92. MoutonL, HenriH, CharifD, BoulétreauM, VavreF (2007) Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol Lett 3: 210–213 doi:10.1098/rsbl.2006.0590

93. MoutonL, HenriH, BouletreauM, VavreF (2003) Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol Ecol 12: 3459–3465.

94. LuP, BianG, PanX, XiZ (2012) Wolbachia Induces Density-Dependent Inhibition to Dengue Virus in Mosquito Cells. PLoS Neglected Tropical Diseases 6: e1754 doi:10.1371/journal.pntd.0001754

95. JaenikeJ (2009) Coupled population dynamics of endosymbionts within and between hosts. Oikos 118: 353–362.

96. FrentiuFD, RobinsonJ, YoungPR, McGrawEA, O'NeillSL (2010) Wolbachia-mediated resistance to dengue virus infection and death at the cellular level. PLoS ONE 5: e13398 doi:10.1371/journal.pone.0013398

97. OsborneSE, Iturbe-OrmaetxeI, BrownlieJC, O'NeillSL, JohnsonKN (2012) Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila. Appl Environ Microbiol 78: 6922–6929 doi:10.1128/AEM.01727-12

98. BressacC, RoussetF (1993) The reproductive incompatibility system in Drosophila simulans: DAPI-staining analysis of the Wolbachia symbionts in sperm cysts. J Invertebr Pathol 61: 226–230 doi:10.1006/jipa.1993.1044

99. BreeuwerJA, WerrenJH (1993) Cytoplasmic incompatibility and bacterial density in Nasonia vitripennis. Genetics 135: 565–574.

100. BourtzisK, NirgianakiA, MarkakisG, SavakisC (1996) Wolbachia infection and cytoplasmic incompatibility in Drosophila species. Genetics 144: 1063–1073.

101. BordensteinSR, MarshallML, FryAJ, KimU, WernegreenJJ (2006) The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2: e43 doi:10.1371/journal.ppat.0020043

102. BoyleL, O'NeillS, RobertsonH, KarrT (1993) Interspecific and intraspecific horizontal transfer of Wolbachia in Drosophila. Science 260: 1796–1799 doi:10.1126/science.8511587

103. UncklessR, BoelioL, HerrenJ, JaenikeJ (2009) Wolbachia as populations within individual insects: causes and consequences of density variation in natural populations. Proc Biol Sci 276: 2805–2811 doi:10.1098/rspb.2009.0287

104. ClarkME, AndersonCL, CandeJ, KarrTL (2005) Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research. Genetics 170: 1667–1675 doi:10.1534/genetics.104.038901

105. Lautié-HarivelN, Thomas-OrillardM (1990) Location of Drosophila C virus target organs in Drosophila host population by an immunofluorescence technique. Biol Cell 69: 35–39.

106. DostertC, JouanguyE, IrvingP, TroxlerL, Galiana-ArnouxD, et al. (2005) The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila. Nat Immunol 6: 946–953 doi:10.1038/ni1237

107. Galiana-ArnouxD, DostertC, SchneemannA, HoffmannJA, ImlerJ-L (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7: 590–597 doi:10.1038/ni1335

108. EleftherianosI, WonS, ChtarbanovaS, SquibanB, OcorrK, et al. (2011) ATP-sensitive potassium channel (KATP)-dependent regulation of cardiotropic viral infections. Proc Natl Acad Sci USA 108: 12024–12029 doi:10.1073/pnas.1108926108

109. HoffmannAA, TurelliM, HarshmanLG (1990) Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933–948.

110. HussainM, LuG, TorresS, EdmondsJH, KayBH, et al. (2013) Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol 87: 851–858 doi:10.1128/JVI.01837-12

111. WeeksAR, TurelliM, HarcombeWR, ReynoldsKT, HoffmannAA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5: e114 doi:10.1371/journal.pbio.0050114

112. Team RC (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

113. PfafflMichael W (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29: e45.

114. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324

115. LiH, HandsakerB, WysokerA, FennellT, RuanJ, et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079 doi:10.1093/bioinformatics/btp352

116. DrummondAJ, SuchardMA, XieD, RambautA (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973 doi:10.1093/molbev/mss075

117. HasegawaM, KishinoH, YanoT (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174.

118. ShapiroB, RambautA, DrummondAJ (2006) Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol Biol Evol 23: 7–9 doi:10.1093/molbev/msj021

119. Haag-LiautardC, CoffeyN, HouleD, LynchM, CharlesworthB, et al. (2008) Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol 6: e204 doi:10.1371/journal.pbio.0060204

120. GiardineB, RiemerC, HardisonRC, BurhansR, ElnitskiL, et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451–1455 doi:10.1101/gr.4086505

121. SchneiderKL, PollardKS, BaertschR, PohlA, LoweTM (2006) The UCSC Archaeal Genome Browser. Nucleic Acids Res 34: D407–D410 doi:10.1093/nar/gkj134

122. KarolchikD, BaertschR, DiekhansM, FureyTS, HinrichsA, et al. (2003) The UCSC Genome Browser Database. Nucleic Acids Res 31: 51–54.

123. YeK, SchulzMH, LongQ, ApweilerR, NingZ (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25: 2865–2871 doi:10.1093/bioinformatics/btp394

124. Marchler-BauerA, LuS, AndersonJB, ChitsazF, DerbyshireMK, et al. (2010) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39: D225–D229 doi:10.1093/nar/gkq1189

125. Marchler-BauerA, ZhengC, ChitsazF, DerbyshireMK, GeerLY, et al. (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41: D348–D352 doi:10.1093/nar/gks1243

126. BerryB, DeddoucheS, KirschnerD, ImlerJ-L, AntoniewskiC (2009) Viral suppressors of RNA silencing hinder exogenous and endogenous small RNA pathways in Drosophila. PLoS ONE 4: e5866 doi:10.1371/journal.pone.0005866

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#