#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Selection on Plant Male Function Genes Identifies Candidates for Reproductive Isolation of Yellow Monkeyflowers


Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.


Vyšlo v časopise: Selection on Plant Male Function Genes Identifies Candidates for Reproductive Isolation of Yellow Monkeyflowers. PLoS Genet 9(12): e32767. doi:10.1371/journal.pgen.1003965
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003965

Souhrn

Understanding the genetic basis of reproductive isolation promises insight into speciation and the origins of biological diversity. While progress has been made in identifying genes underlying barriers to reproduction that function after fertilization (post-zygotic isolation), we know much less about earlier acting pre-zygotic barriers. Of particular interest are barriers involved in mating and fertilization that can evolve extremely rapidly under sexual selection, suggesting they may play a prominent role in the initial stages of reproductive isolation. A significant challenge to the field of speciation genetics is developing new approaches for identification of candidate genes underlying these barriers, particularly among non-traditional model systems. We employ powerful proteomic and genomic strategies to study the genetic basis of conspecific pollen precedence, an important component of pre-zygotic reproductive isolation among yellow monkeyflowers (Mimulus spp.) resulting from male pollen competition. We use isotopic labeling in combination with shotgun proteomics to identify more than 2,000 male function (pollen tube) proteins within maternal reproductive structures (styles) of M. guttatus flowers where pollen competition occurs. We then sequence array-captured pollen tube exomes from a large outcrossing population of M. guttatus, and identify those genes with evidence of selective sweeps or balancing selection consistent with their role in pollen competition. We also test for evidence of positive selection on these genes more broadly across yellow monkeyflowers, because a signal of adaptive divergence is a common feature of genes causing reproductive isolation. Together the molecular evolution studies identify 159 pollen tube proteins that are candidate genes for conspecific pollen precedence. Our work demonstrates how powerful proteomic and genomic tools can be readily adapted to non-traditional model systems, allowing for genome-wide screens towards the goal of identifying the molecular basis of genetically complex traits.


Zdroje

1. Dobzhansky T (1937) Genetics and the Origin of Species. New York: Columbia University Press. 364 p.

2. PresgravesDC (2010) The molecular evolutionary basis of species formation. Nat Rev Genet 11: 175–180.

3. RiesebergLH, BlackmanBK (2010) Speciation genes in plants. Ann Bot 106: 439–455.

4. BombliesK (2010) Doomed lovers: mechanisms of isolation and incompatibility in plants. Annu Rev Plant Biol 61: 109–124.

5. Fisher RA (1930) The Genetical Theory of Natural Selection. Oxford: Clarenden Press.

6. ParkerGA (1970) Sperm competition and its evolutionary consequences in the insects. Biol Rev 45: 525–567.

7. Darwin C (1871) The descent of man, and selection in relation to sex. London: J. Murray.

8. Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton, NJ: Princeton University Press. 501 p.

9. LowryDB, HallMC, SaltDE, WillisJH (2009) Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. New Phytol 183: 776–788.

10. Howard DJ (1999) Conspecific sperm and pollen precedence and speciation. Palo Alto, CA: Annual Reviews. 109–132 p.

11. SwansonWJ, WongA, WolfnerMF, AquadroCF (2004) Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics 168: 1457–1465.

12. SwansonWJ, ClarkAG, Waldrip-DailHM, WolfnerMF, AquadroCF (2001) Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 98: 7375–7379.

13. SwansonWJ, VacquierVD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3: 137–144.

14. FindlayGD, SwansonWJ (2010) Proteomics enhances evolutionary and functional analysis of reproductive proteins. Bioessays 32: 26–36.

15. AagaardJE, YiX, MacCossMJ, SwansonWJ (2006) Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs. Proceedings of the National Academy of Sciences of the United States of America 103: 17302–17307.

16. FindlayGD, YiX, MaccossMJ, SwansonWJ (2008) Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol 6: e178.

17. WuCA, LowryDB, CooleyAM, WrightKM, LeeYW, et al. (2008) Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity (Edinb) 100: 220–230.

18. BeardsleyPM, SchoenigSE, WhittallJB, OlmsteadRG (2004) Patterns of evolution in Western North American Mimulus (Phrymaceae). American Journal of Botany 91: 474–489.

19. VickeryRK (1964) Barriers to gene exchange between members of the Mimulus guttatus complex (Scrophulariaceae). Evolution 18: 52–69.

20. VickeryRK (1978) Case studies in the evolution of species complexes in Mimulus. Evolutionary Biology 11: 405–507.

21. SweigartAL, WillisJH (2003) Patterns of nucleotide diversity in two species of Mimulus are affected by mating system and asymmetric introgression. Evolution Int J Org Evolution 57: 2490–2506.

22. FensterCB, RitlandK (1994) Evidence for natural selection on mating system in Mimulus (Scrophulariaceae). International Journal of Plant Sciences 155: 588–596.

23. LowryDB, RockwoodRC, WillisJH (2008) Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 62: 2196–2214.

24. MartinNH, WillisJH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution Int J Org Evolution 61: 68–82.

25. DiazA, MacnairMR (1999) Pollen tube competition as a mechanism of prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor M-guttatus. New Phytologist 144: 471–478.

26. RiesebergLH, DesrochersAM, YounSJ (1995) Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). American Journal of Botany 82: 515–519.

27. CarneySE, HodgesSA, ArnoldML (1996) Effects of differential pollen-tube growth on hybridization in the Louisiana irises. Evolution 50: 1871–1878.

28. CarneySE, ArnoldAP (1997) Differences in pollen-tube growth rate and reproductive isolation between Louisiana irises. The Journal of Heredity 88: 545–549.

29. EmmsSK, HodgesSA, ArnoldAP (1996) Pollen-tube competition, siring success, and consistent asymmetric hybridization in Louisiana irises. Evolution 50: 2201–2206.

30. RamseyJ, BradshawHD, SchemskeDW (2003) Components of reproductive isolation betwen the monekyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57: 1520–1534.

31. ChapmanMA, ForbesDG, AbbottRJ (2005) Pollen competition among two species of Senecio (Asteraceae) that form a hybrid zone on Mt. Etna, Sicily. American Journal of Botany 92: 730–735.

32. AldridgeG, CampbellDR (2006) Asymmetrical pollen success in Ipomopsis (Polemoniaceae) contact sites. American Journal of Botany 93: 903–909.

33. CampbellDR, AlarconR, WuCA (2003) Reproductive isolation and hybrid pollen disadvantage in Ipomopsis. J Evol Biol 16: 536–540.

34. KermicleJL (2006) A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172: 499–506.

35. BrandvainY, HaigD (2005) Divergent mating systems and parental conflict as a barrier to hybridization in flowering plants. Am Nat 166: 330–338.

36. SkogsmyrI, LankinenA (2002) Sexual selection: an evolutionary force in plants? Biol Rev Camb Philos Soc 77: 537–562.

37. Coyne JA, Orr HA (2004) Speciation. Sunderlan, Mass: Sinauer Associates. 545 p.

38. FishmanL, KellyAJ, MorganE, WillisJH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159: 1701–1716.

39. FishmanL, AagaardJ, TuthillJC (2008) Toward the evolutionary genomics of gametophytic divergence: patterns of transmission ratio distortion in monkeyflower (Mimulus) hybrids reveal a complex genetic basis for conspecific pollen precedence. Evolution 62: 2958–2970.

40. HallMC, WillisJH (2005) Transmission ratio distortion in intraspecific hybrids of Mimulus guttatus: implications for genomic divergence. Genetics 170: 375–386.

41. FiebigA, KimportR, PreussD (2004) Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification. Proc Natl Acad Sci U S A 101: 3286–3291.

42. TakeuchiH, HigashiyamaT (2012) A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol 10: e1001449.

43. HoopmannMR, FinneyGL, MacCossMJ (2007) High-speed data reduction, feature detection, and MS/MS spectrum quality assessment of shotgun proteomics data sets using high-resolution mass spectrometry. Analytical Chemistry 79: 5620–5632.

44. BellCD, SoltisDE, SoltisPS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97: 1296–1303.

45. GrobeiMA, QeliE, BrunnerE, RehrauerH, ZhangR, et al. (2009) Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function. Genome Research 19: 1786–1800.

46. QinY, LeydonAR, ManzielloA, PandeyR, MountD, et al. (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5: e1000621.

47. ChapmanLA, GoringDR (2010) Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. J Exp Bot 61: 1987–1999.

48. HigashiyamaT (2010) Peptide signaling in pollen-pistil interactions. Plant Cell Physiol 51: 177–189.

49. PalaniveluR, JohnsonMA (2010) Functional genomics of pollen tube-pistil interactions in Arabidopsis. Biochem Soc Trans 38: 593–597.

50. MartonML, DresselhausT (2010) Female gametophyte-controlled pollen tube guidance. Biochem Soc Trans 38: 627–630.

51. ClarkNL, AagaardJE, SwansonWJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131: 11–22.

52. IppelJH, PouvreauL, KroefT, GruppenH, VersteegG, et al. (2004) In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics. Proteomics 4: 226–234.

53. HonysD, TwellD (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5: R85.

54. PinaC, PintoF, FeijoJA, BeckerJD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiology 138: 744–756.

55. Holmes-DavisR, TanakaCK, VenselWH, HurkmanWJ, McCormickS (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5: 4864–4884.

56. FernandoDD (2005) Characterization of pollen tube development in Pinus strobus (Eastern white pine) through proteomic analysis of differentially expressed proteins. Proteomics 5: 4917–4926.

57. DaiS, ChenT, ChongK, XueY, LiuS, et al. (2007) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6: 207–230.

58. MoscatelliA, ScaliM, Prescianotto-BaschongC, FerroM, GarinJ, et al. (2005) A methionine synthase homolog is associated with secretory vesicles in tobacco pollen tubes. Planta 221: 776–789.

59. MoscatelliA, IdilliAI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol 51: 727–739.

60. ZoniaL, MunnikT (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14: 318–327.

61. BalgleyBM, LaudemanT, YangL, SongT, LeeCS (2007) Comparative evaluation of tandem MS search algorithms using a target-decoy search strategy. Mol Cell Proteomics 6: 1599–1608.

62. WuG, NieL, ZhangW (2008) Integrative analyses of posttranscriptional regulation in the yeast Saccharomyces cerevisiae using transcriptomic and proteomic data. Curr Microbiol 57: 18–22.

63. Ross-IbarraJ, WrightSI, FoxeJP, KawabeA, DeRose-WilsonL, et al. (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3: e2411.

64. TajimaF (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

65. ClarkNL, GasperJ, SekinoM, SpringerSA, AquadroCF, et al. (2009) Coevolution of interacting fertilization proteins. PLoS Genet 5: e1000570.

66. WuCA, LowryDB, CooleyAM, WrightKM, LeeYW, et al. (2008) Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 100: 220–230.

67. NielsenR (2005) Molecular signatures of natural selection. Annu Rev Genet 39: 197–218.

68. WyckoffGJ, WangW, WuCI (2000) Rapid evolution of male reproductive genes in the descent of man. Nature 403: 304–309.

69. GrathS, ParschJ (2012) Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol Evol 4: 346–359.

70. ScheinM, YangZH, Mitchell-OldsT, SchmidKJ (2004) Rapid evolution of a pollen-specific oleosin-like gene family from Arabidopsis thaliana and closely related species. Molecular Biology and Evolution 21: 659–669.

71. MableBK, OttoSP (1998) The evolution of life cycles with haploid and diploid phases. Bioessays 20: 453–462.

72. DengY, WangW, LiWQ, XiaC, LiaoHZ, et al. (2010) MALE GAMETOPHYTE DEFECTIVE 2, encoding a sialyltransferase-like protein, is required for normal pollen germination and pollen tube growth in Arabidopsis. J Integr Plant Biol 52: 829–843.

73. McCormickS (2004) Control of male gametophyte development. Plant Cell 16 Suppl: S142–153.

74. ProcissiA, GuyonA, PiersonES, GiritchA, KnuimanB, et al. (2003) KINKY POLLEN encodes a SABRE-like protein required for tip growth in Arabidopsis and conserved among eukaryotes. Plant J 36: 894–904.

75. XuZ, DoonerHK (2006) The maize aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics 172: 1251–1261.

76. EngJK, McCormackAL, YatesJR3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry 5: 976–989.

77. MaZQ, DasariS, ChambersMC, LittonMD, SobeckiSM, et al. (2009) IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. J Proteome Res 8: 3872–3881.

78. FlorensL, CarozzaMJ, SwansonSK, FournierM, ColemanMK, et al. (2006) Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40: 303–311.

79. GotzS, Garcia-GomezJM, TerolJ, WilliamsTD, NagarajSH, et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36: 3420–3435.

80. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

81. WillisJH (1993) Partial self-fertilization and inbreeding depression in two populations of Mimulus guttatus. Heredity 71: 145–154.

82. KellyJK (2005) Epistasis in monkeyflowers. Genetics 171: 1917–1931.

83. GeorgeRD, McVickerG, DiederichR, NgSB, MacKenzieAP, et al. (2011) Trans genomic capture and sequencing of primate exomes reveals new targets of positive selection. Genome Research 21: 1686–1694.

84. NgSB, TurnerEH, RobertsonPD, FlygareSD, BighamAW, et al. (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461: 272–276.

85. LiH, DurbinR (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760.

86. McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303.

87. DePristoMA, BanksE, PoplinR, GarimellaKV, MaguireJR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43: 491–498.

88. KimuraM (1969) The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61: 893–903.

89. RonaldJ, AkeyJM (2005) Genome-wide scans for loci under selection in humans. Hum Genomics 2: 113–125.

90. HudsonRR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18: 337–338.

91. EckertAJ, LiechtyJD, TearseBR, PandeB, NealeDB DnaSAM: Software to perform neutrality testing for large datasets with complex null models. Mol Ecol Resour 10: 542–545.

92. FayJC, WuCI (2000) Hitchhiking under positive Darwinian selection. Genetics 155: 1405–1413.

93. Yang Z (2000) Phylogenetic Analysis by Maximum Likelihood (PAML). 3.1 ed. London: University College London.

94. YangZ, SwansonWJ, VacquierVD (2000) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Molecular Biology and Evolution 17: 1446–1455.

95. ZhangB, ChambersMC, TabbDL (2007) Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. J Proteome Res 6: 3549–3557.

96. LinkAJ, EngJ, SchieltzDM, CarmackE, MizeGJ, et al. (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17: 676–682.

97. StoreyJD (2002) A direct approach to false discovery rates. Journal of the Royal Statistical Society, Series B 64: 479–498.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#