#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells


Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression—the level of proteins—is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts.


Vyšlo v časopise: Proteomic Changes Resulting from Gene Copy Number Variations in Cancer Cells. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001090
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001090

Souhrn

Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression—the level of proteins—is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts.


Zdroje

1. AlbertsonDG

2006 Gene amplification in cancer. Trends Genet 22 447 455

2. GanemNJ

StorchovaZ

PellmanD

2007 Tetraploidy, aneuploidy and cancer. Curr Opin Genet Dev 17 157 162

3. TorresEM

SokolskyT

TuckerCM

ChanLY

BoselliM

2007 Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317 916 924

4. WilliamsBR

PrabhuVR

HunterKE

GlazierCM

WhittakerCA

2008 Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322 703 709

5. BeroukhimR

MermelCH

PorterD

WeiG

RaychaudhuriS

The landscape of somatic copy-number alteration across human cancers. Nature 463 899 905

6. BignellGR

GreenmanCD

DaviesH

ButlerAP

EdkinsS

Signatures of mutation and selection in the cancer genome. Nature 463 893 898

7. ReyalF

StranskyN

Bernard-PierrotI

Vincent-SalomonA

de RyckeY

2005 Visualizing chromosomes as transcriptome correlation maps: evidence of chromosomal domains containing co-expressed genes—a study of 130 invasive ductal breast carcinomas. Cancer Res 65 1376 1383

8. ZhouY

LuohSM

ZhangY

WatanabeC

WuTD

2003 Genome-wide identification of chromosomal regions of increased tumor expression by transcriptome analysis. Cancer Res 63 5781 5784

9. CrawleyJJ

FurgeKA

2002 Identification of frequent cytogenetic aberrations in hepatocellular carcinoma using gene-expression microarray data. Genome Biol 3 RESEARCH0075

10. HymanE

KauraniemiP

HautaniemiS

WolfM

MoussesS

2002 Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62 6240 6245

11. FurgeKA

DykemaKJ

HoC

ChenX

2005 Comparison of array-based comparative genomic hybridization with gene expression-based regional expression biases to identify genetic abnormalities in hepatocellular carcinoma. BMC Genomics 6 67

12. ManoMS

RosaDD

De AzambujaE

IsmaelGF

DurbecqV

2007 The 17q12-q21 amplicon: Her2 and topoisomerase-IIalpha and their importance to the biology of solid tumours. Cancer Treat Rev 33 64 77

13. LengauerC

KinzlerKW

VogelsteinB

1998 Genetic instabilities in human cancers. Nature 396 643 649

14. CoxJ

MannM

2008 MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26 1367 1372

15. OngSE

BlagoevB

KratchmarovaI

KristensenDB

SteenH

2002 Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1 376 386

16. AebersoldR

MannM

2003 Mass spectrometry-based proteomics. Nature 422 198 207

17. MakarovA

DenisovE

KholomeevA

BalschunW

LangeO

2006 Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 78 2113 2120

18. de GodoyLM

OlsenJV

CoxJ

NielsenML

HubnerNC

2008 Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455 1251 1254

19. GraumannJ

HubnerNC

KimJB

KoK

MoserM

2008 Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics 7 672 683

20. PollackJR

SorlieT

PerouCM

ReesCA

JeffreySS

2002 Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99 12963 12968

21. StranskyN

VallotC

ReyalF

Bernard-PierrotI

de MedinaSG

2006 Regional copy number-independent deregulation of transcription in cancer. Nat Genet 38 1386 1396

22. ChinSF

TeschendorffAE

MarioniJC

WangY

Barbosa-MoraisNL

2007 High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8 R215

23. NaylorTL

GreshockJ

WangY

ColligonT

YuQC

2005 High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7 R1186 1198

24. LamYW

LamondAI

MannM

AndersenJS

2007 Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17 749 760

25. FutrealPA

CoinL

MarshallM

DownT

HubbardT

2004 A census of human cancer genes. Nat Rev Cancer 4 177 183

26. GlynnRW

MillerN

KerinMJ

17q12-21 - The pursuit of targeted therapy in breast cancer. Cancer Treat Rev

27. GinestierC

AdelaideJ

GoncalvesA

RepelliniL

SircoulombF

2007 ERBB2 phosphorylation and trastuzumab sensitivity of breast cancer cell lines. Oncogene 26 7163 7169

28. ValabregaG

MontemurroF

AgliettaM

2007 Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol 18 977 984

29. NadlerY

GonzalezAM

CampRL

RimmDL

KlugerHM

Growth factor receptor-bound protein-7 (Grb7) as a prognostic marker and therapeutic target in breast cancer. Ann Oncol 21 466 473

30. DonnellanR

ChettyR

1998 Cyclin D1 and human neoplasia. Mol Pathol 51 1 7

31. GautschiO

RatschillerD

GuggerM

BetticherDC

HeighwayJ

2007 Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer 55 1 14

32. RoyPG

PrattN

PurdieCA

BakerL

AshfieldA

2009 High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer. Int J Cancer

33. Serra-PagesC

KedershaNL

FazikasL

MedleyQ

DebantA

1995 The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. Embo J 14 2827 2838

34. LuoML

ShenXM

ZhangY

WeiF

XuX

2006 Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res 66 11690 11699

35. StrasserA

NewtonK

1999 FADD/MORT1, a signal transducer that can promote cell death or cell growth. Int J Biochem Cell Biol 31 533 537

36. NicholsonKM

AndersonNG

2002 The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14 381 395

37. TohY

NicolsonGL

2009 The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis 26 215 227

38. HeyenCA

TagliabracciVS

ZhaiL

RoachPJ

2009 Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene. Biochem Biophys Res Commun 390 1414 1418

39. ChhabraES

HiggsHN

2006 INF2 Is a WASP homology 2 motif-containing formin that severs actin filaments and accelerates both polymerization and depolymerization. J Biol Chem 281 26754 26767

40. WeiskirchenR

GuntherK

2003 The CRP/MLP/TLP family of LIM domain proteins: acting by connecting. Bioessays 25 152 162

41. FragaMF

HerranzM

EspadaJ

BallestarE

PazMF

2004 A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res 64 5527 5534

42. WisniewskiJR

ZougmanA

NagarajN

MannM

2009 Universal sample preparation method for proteome analysis. Nat Methods 6 359 362

43. HubnerNC

RenS

MannM

2008 Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. Proteomics 8 4862 4872

44. RappsilberJ

IshihamaY

MannM

2003 Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75 663 670

45. OlsenJV

de GodoyLM

LiG

MacekB

MortensenP

2005 Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4 2010 2021

46. CoxJ

MaticI

HilgerM

NagarajN

SelbachM

2009 A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4 698 705

47. JensenLJ

KuhnM

StarkM

ChaffronS

CreeveyC

2009 STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37 D412 416

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#