#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Evidence That Mutation Is Universally Biased towards AT in Bacteria


Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria. We estimate mutational patterns using sequence datasets from five such clonal pathogens belonging to four diverse bacterial clades that span most of the range of genomic nucleotide content. We demonstrate that across different types of sites and in all four clades mutation is consistently biased towards AT. This is true even in clades that have high genomic GC content. In all studied cases the mutational bias towards AT is primarily due to the high rate of C/G to T/A transitions. These results suggest that bacterial mutational biases are far less variable than previously thought. They further demonstrate that variation in nucleotide content cannot stem entirely from variation in mutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotide content.


Vyšlo v časopise: Evidence That Mutation Is Universally Biased towards AT in Bacteria. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001115
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001115

Souhrn

Mutation is the engine that drives evolution and adaptation forward in that it generates the variation on which natural selection acts. Mutation is a random process that nevertheless occurs according to certain biases. Elucidating mutational biases and the way they vary across species and within genomes is crucial to understanding evolution and adaptation. Here we demonstrate that clonal pathogens that evolve under severely relaxed selection are uniquely suitable for studying mutational biases in bacteria. We estimate mutational patterns using sequence datasets from five such clonal pathogens belonging to four diverse bacterial clades that span most of the range of genomic nucleotide content. We demonstrate that across different types of sites and in all four clades mutation is consistently biased towards AT. This is true even in clades that have high genomic GC content. In all studied cases the mutational bias towards AT is primarily due to the high rate of C/G to T/A transitions. These results suggest that bacterial mutational biases are far less variable than previously thought. They further demonstrate that variation in nucleotide content cannot stem entirely from variation in mutational biases and that natural selection and/or a natural selection-like process such as biased gene conversion strongly affect nucleotide content.


Zdroje

1. LynchM

2007 The origins of Genome Architecture Sunderland, MA Sinauer Associates, Inc

2. SueokaN

1962 On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci U S A 48 582 592

3. BentleySD

ParkhillJ

2004 Comparative genomic structure of prokaryotes. Annu Rev Genet 38 771 792

4. MutoA

OsawaS

1987 The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A 84 166 169

5. ChenSL

LeeW

HottesAK

ShapiroL

McAdamsHH

2004 Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci U S A 101 3480 3485

6. ShieldsDC

1990 Switches in species-specific codon preferences: the influence of mutation biases. J Mol Evol 31 71 80

7. AnderssonSG

SharpPM

1996 Codon usage and base composition in Rickettsia prowazekii. J Mol Evol 42 525 536

8. GraurD

LiW

2000 Fundementals of molecular evolution Sunderland, MA Sinauer Associaes, Inc 412 415

9. DuretL

GaltierN

2009 Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet 10 285 311

10. NagylakiT

PetesTD

1982 Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100 315 337

11. TouchonM

HoedeC

TenaillonO

BarbeV

BaeriswylS

2009 Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5 e1000344

12. ElenaSF

LenskiRE

2003 Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4 457 469

13. SchaaperRM

DunnRL

1991 Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129 317 326

14. HudsonRE

BergthorssonU

OchmanH

2003 Transcription increases multiple spontaneous point mutations in Salmonella enterica. Nucleic Acids Res 31 4517 4522

15. GalhardoRS

HastingsPJ

RosenbergSM

2007 Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42 399 435

16. BullHJ

LombardoMJ

RosenbergSM

2001 Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc Natl Acad Sci U S A 98 8334 8341

17. MitchellA

GraurD

2005 Inferring the pattern of spontaneous mutation from the pattern of substitution in unitary pseudogenes of Mycobacterium leprae and a comparison of mutation patterns among distantly related organisms. J Mol Evol 61 795 803

18. RochaEP

TouchonM

FeilEJ

2006 Similar compositional biases are caused by very different mutational effects. Genome Res 16 1537 1547

19. AkashiH

1995 Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA. Genetics 139 1067 1076

20. MesserPW

2009 Measuring the Rates of Spontaneous Mutation from Deep and Large-Scale Polymorphism Data. Genetics

21. HaddrillPR

CharlesworthB

2008 Non-neutral processes drive the nucleotide composition of non-coding sequences in Drosophila. Biol Lett 4 438 441

22. WebsterMT

SmithNG

EllegrenH

2003 Compositional evolution of noncoding DNA in the human and chimpanzee genomes. Mol Biol Evol 20 278 286

23. LercherMJ

SmithNG

Eyre-WalkerA

HurstLD

2002 The evolution of isochores: evidence from SNP frequency distributions. Genetics 162 1805 1810

24. DoolittleWF

ZhaxybayevaO

2009 On the origin of prokaryotic species. Genome Res 19 744 756

25. HershbergR

LipatovM

SmallPM

ShefferH

NiemannS

2008 High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6 e311

26. LynchM

2010 Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A 107 961 968

27. PetrovDA

HartlDL

1999 Patterns of nucleotide substitution in Drosophila and mammalian genomes. Proc Natl Acad Sci U S A 96 1475 1479

28. OssowskiS

SchneebergerK

Lucas-LledoJI

WarthmannN

ClarkRM

2009 The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327 92 94

29. DenverDR

DolanPC

WilhelmLJ

SungW

Lucas-LledoJI

2009 A genome-wide view of Caenorhabditis elegans base-substitution mutation processes. Proc Natl Acad Sci U S A 106 16310 16314

30. KeightleyPD

TrivediU

ThomsonM

OliverF

KumarS

2009 Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. Genome Res 19 1195 1201

31. LynchM

SungW

MorrisK

CoffeyN

LandryCR

2008 A genome-wide view of the spectrum of spontaneous mutations in yeast. Proc Natl Acad Sci U S A 105 9272 9277

32. BalbiKJ

RochaEP

FeilEJ

2009 The temporal dynamics of slightly deleterious mutations in Escherichia coli and Shigella spp. Mol Biol Evol 26 345 355

33. LindPA

AnderssonDI

2008 Whole-genome mutational biases in bacteria. Proc Natl Acad Sci U S A 105 17878 17883

34. SprattBG

2004 Exploring the concept of clonality in bacteria. Methods Mol Biol 266 323 352

35. NeiM

GojoboriT

1986 Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3 418 426

36. FayJC

WuCI

2003 Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genomics Hum Genet 4 213 235

37. HershbergR

TangH

PetrovDA

2007 Reduced selection leads to accelerated gene loss in Shigella. Genome Biol 8 R164

38. MoranNA

McCutcheonJP

NakabachiA

2008 Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42 165 190

39. LiWH

1987 Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons. J Mol Evol 24 337 345

40. HershbergR

PetrovDA

2008 Selection on codon bias. Annu Rev Genet 42 287 299

41. HildebrandF

MeyerA

Eyre-WalkerA

2010 Evidence of Selection upon Genomic GC-content in Bacteria. PLoS Genet 6 e1001107

42. HershbergR

PetrovDA

2009 General rules for optimal codon choice. PLoS Genet 5 e1000556

43. McCutcheonJP

McDonaldBR

MoranNA

2009 Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Genet 5 e1000565

44. GaltierN

LobryJR

1997 Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J Mol Evol 44 632 636

45. MustoH

NayaH

ZavalaA

RomeroH

Alvarez-ValinF

2004 Correlations between genomic GC levels and optimal growth temperatures in prokaryotes. FEBS Lett 573 73 77

46. NayaH

RomeroH

ZavalaA

AlvarezB

MustoH

2002 Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes. J Mol Evol 55 260 264

47. McEwanCE

GathererD

McEwanNR

1998 Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas 128 173 178

48. WangHC

SuskoE

RogerAJ

2006 On the correlation between genomic G+C content and optimal growth temperature in prokaryotes: data quality and confounding factors. Biochem Biophys Res Commun 342 681 684

49. ZhaoX

ZhangZ

YanJ

YuJ

2007 GC content variability of eubacteria is governed by the pol III alpha subunit. Biochem Biophys Res Commun 356 20 25

50. MarashiSA

GhalanborZ

2004 Correlations between genomic GC levels and optimal growth temperatures are not ‘robust’. Biochem Biophys Res Commun 325 381 383

51. BasakS

MandalS

GhoshTC

2005 Correlations between genomic GC levels and optimal growth temperatures: some comments. Biochem Biophys Res Commun 327 969 970

52. HoltKE

ParkhillJ

MazzoniCJ

RoumagnacP

WeillFX

2008 High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 40 987 993

53. GreeneJM

CollinsF

LefkowitzEJ

RoosD

ScheuermannRH

2007 National Institute of Allergy and Infectious Diseases bioinformatics resource centers: new assets for pathogen informatics. Infect Immun 75 3212 3219

54. PearsonWR

LipmanDJ

1988 Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85 2444 2448

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#