#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genome-Wide Double-Stranded RNA Sequencing Reveals the Functional Significance of Base-Paired RNAs in


The functional structure of all biologically active molecules is dependent on intra- and inter-molecular interactions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions. Unfortunately, intra- and inter-molecular base-pairing information is lacking for most RNAs. Here, we marry classical nuclease-based structure mapping techniques with high-throughput sequencing technology to interrogate all base-paired RNA in Arabidopsis thaliana and identify ∼200 new small (sm)RNA–producing substrates of RNA–DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs reveals conserved functionality within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs, as well as a novel population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-molecular base-pairing interactions to produce a genome-wide collection of RNA secondary structure models. Although our methodology reveals the pairing status of RNA molecules in the absence of cellular proteins, previous studies have demonstrated that structural information obtained for RNAs in solution accurately reflects their structure in ribonucleoprotein complexes. Furthermore, our identification of RNA–DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs using this approach strongly suggests that RNA molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight the importance of base-paired RNAs in eukaryotes and present an approach that should be widely applicable for the analysis of this key structural feature of RNA.


Vyšlo v časopise: Genome-Wide Double-Stranded RNA Sequencing Reveals the Functional Significance of Base-Paired RNAs in. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001141
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001141

Souhrn

The functional structure of all biologically active molecules is dependent on intra- and inter-molecular interactions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions. Unfortunately, intra- and inter-molecular base-pairing information is lacking for most RNAs. Here, we marry classical nuclease-based structure mapping techniques with high-throughput sequencing technology to interrogate all base-paired RNA in Arabidopsis thaliana and identify ∼200 new small (sm)RNA–producing substrates of RNA–DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs reveals conserved functionality within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs, as well as a novel population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-molecular base-pairing interactions to produce a genome-wide collection of RNA secondary structure models. Although our methodology reveals the pairing status of RNA molecules in the absence of cellular proteins, previous studies have demonstrated that structural information obtained for RNAs in solution accurately reflects their structure in ribonucleoprotein complexes. Furthermore, our identification of RNA–DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs using this approach strongly suggests that RNA molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight the importance of base-paired RNAs in eukaryotes and present an approach that should be widely applicable for the analysis of this key structural feature of RNA.


Zdroje

1. BrierleyI

PennellS

GilbertRJ

2007 Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol 5 598 610

2. CooperTA

WanL

DreyfussG

2009 RNA and disease. Cell 136 777 793

3. CruzJA

WesthofE

2009 The dynamic landscapes of RNA architecture. Cell 136 604 609

4. MendellJT

DietzHC

2001 When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell 107 411 414

5. MontangeRK

BateyRT

2008 Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37 117 133

6. BurattiE

MuroAF

GiombiM

GherbassiD

IaconcigA

2004 RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol 24 1387 1400

7. SharpPA

2009 The centrality of RNA. Cell 136 577 580

8. BaulcombeD

2004 RNA silencing in plants. Nature 431 356 363

9. CarthewRW

SontheimerEJ

2009 Origins and Mechanisms of miRNAs and siRNAs. Cell 136 642 655

10. BartelDP

2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 281 297

11. MeisterG

TuschlT

2004 Mechanisms of gene silencing by double-stranded RNA. Nature 431 343 349

12. Jones-RhoadesMW

BartelDP

BartelB

2006 MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57 19 53

13. AlmeidaR

AllshireRC

2005 RNA silencing and genome regulation. Trends Cell Biol 15 251 258

14. TomariY

ZamorePD

2005 Perspective: machines for RNAi. Genes Dev 19 517 529

15. MaidaY

YasukawaM

FuruuchiM

LassmannT

PossematoR

2009 An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461 230 235

16. DalmayT

HamiltonA

RuddS

AngellS

BaulcombeDC

2000 An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101 543 553

17. MourrainP

BeclinC

ElmayanT

FeuerbachF

GodonC

2000 Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101 533 542

18. GazzaniS

LawrensonT

WoodwardC

HeadonD

SablowskiR

2004 A link between mRNA turnover and RNA interference in Arabidopsis. Science 306 1046 1048

19. VoinnetO

2008 Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13 317 328

20. AllenE

XieZ

GustafsonAM

CarringtonJC

2005 microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 207 221

21. AdenotX

ElmayanT

LauresserguesD

BoutetS

BoucheN

2006 DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16 927 932

22. FahlgrenN

MontgomeryTA

HowellMD

AllenE

DvorakSK

2006 Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16 939 944

23. GarciaD

CollierSA

ByrneME

MartienssenRA

2006 Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16 933 938

24. BorsaniO

ZhuJ

VersluesPE

SunkarR

ZhuJK

2005 Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123 1279 1291

25. PeragineA

YoshikawaM

WuG

AlbrechtHL

PoethigRS

2004 SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18 2368 2379

26. VazquezF

VaucheretH

RajagopalanR

LepersC

GasciolliV

2004 Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16 69 79

27. YoshikawaM

PeragineA

ParkMY

PoethigRS

2005 A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19 2164 2175

28. HunterC

WillmannMR

WuG

YoshikawaM

de la Luz Gutierrez-NavaM

2006 Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133 2973 2981

29. WalkerTA

JohnsonKD

OlsenGJ

PetersMA

PaceNR

1982 Enzymatic and chemical structure mapping of mouse 28S ribosomal ribonucleic acid contacts in 5.8S ribosomal ribonucleic acid. Biochemistry 21 2320 2329

30. FischerRL

GoldbergRB

1982 Structure and flanking regions of soybean seed protein genes. Cell 29 651 660

31. AxtellMJ

JanC

RajagopalanR

BartelDP

2006 A two-hit trigger for siRNA biogenesis in plants. Cell 127 565 577

32. ChenHM

LiYH

WuSH

2007 Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci U S A 104 3318 3323

33. HowellMD

FahlgrenN

ChapmanEJ

CumbieJS

SullivanCM

2007 Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19 926 942

34. LuC

KulkarniK

SouretFF

MuthuValliappanR

TejSS

2006 MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 16 1276 1288

35. ChanSW

HendersonIR

JacobsenSE

2005 Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6 351 360

36. PontierD

YahubyanG

VegaD

BulskiA

Saez-VasquezJ

2005 Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev 19 2030 2040

37. QiY

HeX

WangXJ

KohanyO

JurkaJ

2006 Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443 1008 1012

38. ZhengX

ZhuJ

KapoorA

ZhuJK

2007 Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26 1691 1701

39. FangY

SpectorDL

2007 Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol 17 818 823

40. SongL

HanMH

LesickaJ

FedoroffN

2007 Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. Proc Natl Acad Sci U S A 104 5437 5442

41. LeeYS

ShibataY

MalhotraA

DuttaA

2009 A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23 2639 2649

42. LunterG

PontingCP

HeinJ

2006 Genome-wide identification of human functional DNA using a neutral indel model. PLoS Comput Biol 2 e5 doi:10.1371/journal.pcbi.0020005

43. WaterstonRH

Lindblad-TohK

BirneyE

RogersJ

AbrilJF

2002 Initial sequencing and comparative analysis of the mouse genome. Nature 420 520 562

44. ListerR

O'MalleyRC

Tonti-FilippiniJ

GregoryBD

BerryCC

2008 Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133 523 536

45. DibrovSM

ParsonsJ

HermannT

2010 A model for the study of ligand binding to the ribosomal RNA helix h44. Nucleic Acids Res 38 4458 4465

46. ZhengQ

WangXJ

2008 GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36 W358 363

47. CannoneJJ

SubramanianS

SchnareMN

CollettJR

D'SouzaLM

2002 The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3 2

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#