#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure


Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers) positions nucleosomes adjacent to the origin to promote replication origin function.


Vyšlo v časopise: Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure. PLoS Genet 6(9): e32767. doi:10.1371/journal.pgen.1001092
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1001092

Souhrn

Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers) positions nucleosomes adjacent to the origin to promote replication origin function.


Zdroje

1. MarahrensY

StillmanB

1992 A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255 817 823

2. BellSP

StillmanB

1992 ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357 128 134

3. RaghuramanMK

WinzelerEA

CollingwoodD

HuntS

WodickaL

2001 Replication dynamics of the yeast genome. Science 294 115 121

4. YabukiN

TerashimaH

KitadaK

2002 Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7 781 789

5. MacAlpineDM

BellSP

2005 A genomic view of eukaryotic DNA replication. Chromosome Res 13 309 326

6. WyrickJJ

AparicioJG

ChenT

BarnettJD

JenningsEG

2001 Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294 2357 2360

7. XuW

AparicioJG

AparicioOM

TavareS

2006 Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7 276

8. NieduszynskiCA

KnoxY

DonaldsonAD

2006 Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev 20 1874 1879

9. NieduszynskiCA

HiragaS

AkP

BenhamCJ

DonaldsonAD

2007 OriDB: a DNA replication origin database. Nucleic Acids Res 35 D40 46

10. ThomaF

BergmanLW

SimpsonRT

1984 Nuclease digestion of circular TRP1ARS1 chromatin reveals positioned nucleosomes separated by nuclease-sensitive regions. J Mol Biol 177 715 733

11. SimpsonRT

1990 Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343 387 389

12. LipfordJR

BellSP

2001 Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell 7 21 30

13. LeeW

TilloD

BrayN

MorseRH

DavisRW

2007 A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39 1235 1244

14. WhitehouseI

RandoOJ

DelrowJ

TsukiyamaT

2007 Chromatin remodelling at promoters suppresses antisense transcription. Nature 450 1031 1035

15. AlbertI

MavrichTN

TomshoLP

QiJ

ZantonSJ

2007 Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446 572 576

16. MavrichTN

IoshikhesIP

VentersBJ

JiangC

TomshoLP

2008 A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18 1073 1083

17. FieldY

KaplanN

Fondufe-MittendorfY

MooreIK

SharonE

2008 Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4 e1000216 doi:10.1371/journal.pcbi.1000216

18. RaghuramanMK

WinzelerEA

CollingwoodD

HuntS

WodickaL

2001 Replication dynamics of the yeast genome. Science 294 115 121

19. RaoH

MarahrensY

StillmanB

1994 Functional conservation of multiple elements in yeast chromosomal replicators. Mol Cell Biol 14 7643 7651

20. YuanGC

LiuYJ

DionMF

SlackMD

WuLF

2005 Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309 626 630

21. ZhangY

MoqtaderiZ

RattnerBP

EuskirchenG

SnyderM

2009 Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16 847 852

22. JiangC

PughBF

2009 Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10 161 172

23. SuterB

SchnappaufG

ThomaF

2000 Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo. Nucleic Acids Res 28 4083 4089

24. FriedelM

NikolajewaS

SuhnelJ

WilhelmT

2009 DiProDB: a database for dinucleotide properties. Nucleic Acids Res 37 D37 40

25. ShivaswamyS

BhingeA

ZhaoY

JonesS

HirstM

2008 Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6 e65 doi:10.1371/journal.pbio.0060065

26. FengW

CollingwoodD

BoeckME

FoxLA

AlvinoGM

2006 Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 8 148 155

27. ShimadaK

GasserSM

2007 The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae. Cell 128 85 99

28. ShimadaK

PaseroP

GasserSM

2002 ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev 16 3236 3252

29. KaplanN

MooreIK

Fondufe-MittendorfY

GossettAJ

TilloD

2009 The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458 362 366

30. GerbiSA

BielinskyAK

2002 DNA replication and chromatin. Curr Opin Genet Dev 12 243 248

31. KornbergR

1981 The location of nucleosomes in chromatin: specific or statistical. Nature 292 579 580

32. KornbergRD

StryerL

1988 Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16 6677 6690

33. DiffleyJFX

CockerJH

1992 Protein-DNA interactions at a yeast replication origin. Nature 357 169 172

34. DiffleyJFX

CockerJH

DowellSJ

RowleyA

1994 Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78 303 316

35. KnottSR

ViggianiCJ

TavareS

AparicioOM

2009 Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev 23 1077 1090

36. TrioloT

SternglanzR

1996 Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381 251 253

37. KroganNJ

CagneyG

YuH

ZhongG

GuoX

2006 Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 637 643

38. SuterB

PogoutseO

GuoX

KroganN

LewisP

2007 Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 5 38

39. ZhouJ

ChauC

DengZ

StedmanW

LiebermanPM

2005 Epigenetic control of replication origins. Cell Cycle 4 889 892

40. GrothA

RochaW

VerreaultA

AlmouzniG

2007 Chromatin challenges during DNA replication and repair. Cell 128 721 733

41. TabancayAPJr

ForsburgSL

2006 Eukaryotic DNA replication in a chromatin context. Curr Top Dev Biol 76 129 184

42. KempMG

GhoshM

LiuG

LeffakM

2005 The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res 33 325 336

43. ConnellyJJ

YuanP

HsuHC

LiZ

XuRM

2006 Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain. Mol Cell Biol 26 3256 3265

44. NoguchiK

VassilevA

GhoshS

YatesJL

DePamphilisML

2006 The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J 25 5372 5382

45. EatonML

GalaniK

KangS

BellSP

MacAlpineDM

Conserved nucleosome positioning defines replication origins. Genes Dev 24 748 753

46. JiangC

PughBF

2009 A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol 10 R109

47. CharifD

LobryJR

2007 SeqinR 1.0-2: a contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. Structural approaches to sequence evolution: Molecules, networks, populations New York Springer Verlag 207 232

48. DavierwalaAP

HaynesJ

LiZ

BrostRL

RobinsonMD

2005 The synthetic genetic interaction spectrum of essential genes. Nat Genet 37 1147 1152

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2010 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#