#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

CARDIOPULMONARY EXERCISE TESTING FOR VO2MAX DETERMINING IN SUBJECTS OF DIFFERENT PHYSICAL ACTIVITY


Cardiopulmonary exercise testing (CPET) provides assessment of the integrative exercise responses involving the pulmonary, cardiovascular, haematopoietic, neuropsychological, and skeletal muscle systems, which are not adequately reflected through the measurement of individual organ system function. This non-invasive, dynamic physiological overview permits the evaluation of both submaximal and peak exercise responses, providing the doctor with relevant information for clinical decision making. CPET is increasingly being used in a wide spectrum of clinical applications for the evaluation of undiagnosed exercise intolerance and for the objective determination of functional capacity and impairment. Its use in patient management is increasing with the understanding that resting pulmonary and cardiac function testing cannot reliably predict exercise performance and functional capacity and that overall health status correlates better with exercise tolerance than with resting measurements. CPET involves measurements of respiratory oxygen uptake, carbon dioxide expenditure and pulmonary ventilation during a step-vice increased physical workload up to the maximum (or symptom-limited level in patients) on ergometer. In this paper the principle of CPET is described and results for VO2max and VO2max/kg of almost 3000 measurements in subjects of different physical activity are presented. These values characterizing cardiorespiratory capacity of the subjects were compared to the values of maximal performance achieved during stress test on bicycle ergometer (Wmax and Wmax/kg) and regression equations for VO2max – Wmax and VO2max/kg – Wmax/kg were calculated.

Keywords:
cardiopulmonary exercise testing, VO2max, bicycle ergometer, regression equations, measuring system


Autoři: Milan Stork 1;  Jaroslav Novak 2;  Vaclav Zeman 2
Působiště autorů: Faculty of Electrical Engineering/RICE, University of West Bohemia, Plzen, CZ 1;  Faculty of Medicine, Charles University, Plzen, CZ 2
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 4, 2016, 46, 91-101
Kategorie: Původní práce

Souhrn

Cardiopulmonary exercise testing (CPET) provides assessment of the integrative exercise responses involving the pulmonary, cardiovascular, haematopoietic, neuropsychological, and skeletal muscle systems, which are not adequately reflected through the measurement of individual organ system function. This non-invasive, dynamic physiological overview permits the evaluation of both submaximal and peak exercise responses, providing the doctor with relevant information for clinical decision making. CPET is increasingly being used in a wide spectrum of clinical applications for the evaluation of undiagnosed exercise intolerance and for the objective determination of functional capacity and impairment. Its use in patient management is increasing with the understanding that resting pulmonary and cardiac function testing cannot reliably predict exercise performance and functional capacity and that overall health status correlates better with exercise tolerance than with resting measurements. CPET involves measurements of respiratory oxygen uptake, carbon dioxide expenditure and pulmonary ventilation during a step-vice increased physical workload up to the maximum (or symptom-limited level in patients) on ergometer. In this paper the principle of CPET is described and results for VO2max and VO2max/kg of almost 3000 measurements in subjects of different physical activity are presented. These values characterizing cardiorespiratory capacity of the subjects were compared to the values of maximal performance achieved during stress test on bicycle ergometer (Wmax and Wmax/kg) and regression equations for VO2max – Wmax and VO2max/kg – Wmax/kg were calculated.

Keywords:
cardiopulmonary exercise testing, VO2max, bicycle ergometer, regression equations, measuring system


Zdroje

[1] ADA/ACSM: Joint statement: diabetes mellitus and exercise. Med. Sci. Sport Exerc. 29, 1997: i–vi.

[2] ADA: Standards of medical care in diabetes - 2015. Diabetes Care38, 2015, Suppl. 1.

[3] American College of Sports Medicine: Position stand: exercise and type 2 diabetes. Med. Sci. Sports Exerc. 22, 2000: 1345–1360.

[4] Andersen, L.B., Haraldsdóttir, J.: Coronary heart risk factors, physical activity, and fitness in young Danes. Med. Sci. Sports Exerc. 27, 1995: 158–163.

[5] Bassett, D.R., Howley, E.T.: Limiting factors for maximum oxygen uptake and determination of endurance performance. Med. Sci. Sports Exerc. 32, 2000: 70–84.

[6] Bertrais, S., et al.: Sedentary behaviors, physical activity, and metabolic syndrome in middle-aged French subjects. Obes. Res. 13, 2005: 936–944.

[7] Betik, A.C., Hepple, R.T.: Deteminannts of VO2max decline with aging: an integrated perspective. Appl. Physiol. Nutr. Metab. 33, 2008, 1: 130–140.

[8] Blair, S.N., et al.: The evolution of physical activity recommendations: how much is enough? Amer. J. Clin. Nutr. 79, 2004 (Suppl.): 913S–920S.

[9] Borodulin, K., et al.: Associations between estimated aerobic fitness and cardiovascular risk factors in adults with different levels of abdominal obesity. Eur. J. Cardiovasc. Prev. Rehabil. 12, 2005: 126–131.

[10] Bouchard, C., et al.: Personalized preventive medicine: genetics and the response to regular exercise in preventive interventions. Prog. Cardiovasc. Dis. 57, 2015: 337–346.

[11] Bouchard, C., et al.: Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci. Sports Exerc. 30, 1998: 252–258.

[12] Booth, F.W., Krupa, D.J.: Sedentary death syndrome is what researchers now call American second largest threat to public health. http://hdl.handle.net/10355/10361.

[13] Boule, N.G., et al.: Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 46, 2003: 1071–1081.

[14] Brien, S.E., et al.: Physical activity, cardiorespiratory fitness and body mass index as predictors of substantial gain and obesity. Can. J. Public Health 98, 2006: 121–124.

[15] Briffa, K., Briffa, T.: Aerobic exercise reduces blood pressure in both hypertensive and normotensive persons. Aus. J. Physiother. 48, 2002: 238.

[16] Cooper, K.H.: A means of assessing maximal oxygen intake. JAMA 203, 1968: 201–204.

[17] Dickinson, H.O., et al.: Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J. Hypertensdion 24, 2006: 215–233.

[18] Eaton, C.B., et al.: Physical activity, physical fitness, and coronary heart disease risk factors. Med. Sci. Sports Exerc. 27, 1995: 340–346.

[19] Eaton, C.N.: Relation of physical activity and cardiovascular fitness to coronary heart disease. Part I: a meta-analysis of the independent relation of physical activity and coronary heart disease. J. Am. Board Fam. Pract. 5, 1992: 31–42.

[20] Edvardsen, E., et al.: (2014) End Criteria for Reaching Maximal Oxygen Uptake Must Be Strict and Adjusted to Sex and Age: A Cross-Sectional Study. PLoS ONE 9, 2014, 1: e85276. doi:10.1371/journal.pone.0085276.

[21] Eicher, J. D., et al.: The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am. Heart. J. 160, 2010: 513–520.

[22] Friedenreich, Ch.M., Orenstein, M.R.: Physical activity and cancer prevention. etiological evidence and biological mechanisms. J. Nutr. 132, 2002: 3465S–3464S.

[23] Guidry, M. A., et al.: The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am. Heart J. 151, 2006: e5–12.

[24] Hamer, M.: The anti-hypertensive effects of exercise. Sports Med 36, 2006: 109–116.

[25] Haskell, W.L., et al.: Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 2007: 1423–1434.

[26] Hawkins, S., Wiswell, R.: Rate and mechanism of maximal oxygen consumption decline with aging: implications for exercise training. Sports Med. 33, 2003: 877–888.

[27] Heyward, V.H., Gibson A.: Advanced Fitness Assessment and Exercise Prescription, 7th Edition, Human Kinetics, 2014.

[28] Howley, E.T., et al.: Criteria for maxima oxygen uptake: review and commentary. Med. Sci. Sports Exerc. 9, 1995: 1292–1301.

[29] Cheng, Y., et al.: Effects of physical activity on exercise tests and respiratory function. Br. J. Sports Med. 37, 2003: 521–528.

[30] Jetté, M., et al.: Relation between cardiorespiratory fitness and selected risk factors for coronary heart disease in a population of Canadian men and women. CMAJ 146, 1992: 1353–1360.

[31] Jidong Sung, et al.: Relationship between Aerobic Fitness and Arterial Stiffness According to Hypertensive State In: Epidemiology and Prevention of CV Disease. Abstract 15508. Circulation 2015.

[32] Kenney, M.J., Seals, D.R.: Post-exercise hypotension. Key features, mechanisms and clinical significance. Hypertension 22, 1993: 653–664.

[33] Kishida, T., et al.: Relationships between maximal oxygen uptake (VO2max) and physical activity, blood pressure and serum lipids (Abstract). Nihon Eiseigaku Zasshi 52, 1997: 475–480.

[34] Kodama, S., et al.: Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women. JAMA 301, 2009: 2024–2035.

[35] Kučera, M., a spol.: Kontrola a hodnocení výsledků léčebné tělesné výchovy u nemocných po infarktu myokardu pomocí bicyklové ergometrie. Rehabilitácia 3, 1970, Suppl. 1: 22–23.

[36] Kučera, M., a spol.: Vliv léčebné tělesné výchovy na lipidový, glycidový a purinový metabolismus. Vnitřní Lék. 19, 1973: 365–369.

[37] Laaksonen, D.E., et al: Low Levels of Leisure-Time Physical Activity and Cardiorespiratory Fitness Predict Development of the Metabolic Syndrome. Diab. Care 25, 2002: 1612–1618.

[38] Lee, I.M.: Physical activity and cancer prevention - Data from epidemiologic studies. Med. Sci. Sport Exerc. 35, 2003: 1623–1627.

[39] Lee, I.M., et al.: Relative intensity of physical activity and risk of coronary heart disease. Circulation 107, 2003: 1110-1116.

[40] Mackenzie, B.: Cooper VO2 max Test.

http://www.brianmac.co.uk/gentest.htm [Accessed 1/6/2015]

[41] Máček, M., Matouš, M.: Význam cvičení a pohybové aktivity při léčení a prevenci hypertenze. Med. Sport. Bohem. & Slov. 10, 2001: 113–119.

[42] Máček, M., Seliger, V., et al.: Physical fitness of the Czecho-slovak population between the ages of 12 and 55 years. Oxygen consumption and oxygen puls rate. Physiol. Bohemoslov. 28, 1979: 75–87.

[43] Maksud, G., Coutts, D.: Application of the Cooper twelve-minute Run-Walk test to young males. Res. Quarterly 42, 1971: 54–59.

[44] Maltais, F., et al.: Intensity of training and physiologic adaptation in patients with chronic obstructive pulmonary disease. Am. J. Crit. Care Med. 155, 1997: 555–561.

[45] Manson, J., et al.: A prospective study of exercise and incidence of diabetes among US physicians. JAMA 268, 1992: 63–67.

[46] Matouš, M., a spol.: Výsledky intervenčního programu u pa-cientů s projevy nebo rizikem ischemické choroby srdeční. Med. Sport. Bohem. Slov. 9, 2000: 68–73.

[47] McAuley, E.: Physical activity and psychosocial outcomes. In: Bouchard, C., et al.: Physical activity, fitness, and health. Champaign, IL: Human Kinetics, 1994: 551–68.

[48] McMurray, R.G., et al.: Is physical activity or aerobic power more influential on reducing cardiovascular disease risk factors? Med. Sci. Sports Exerc. 30, 1998: 1521–1529.

[49] Mehri, S.N., et al.: Effect of treadmill exercise training on VO2peak in chronic obstructive pulmonary disease. Tunaffos 6, 2007: 18–24.

[50] North, T.C., et al.: Effect of exercise on depression. Exerc. Sport Sci. Rev. 18, 1990: 379–415.

[51] Nes, B.M., et al.: A simple nonexercise model of cardio-respiratory fitness predicts long-term mortality. Med Sci Sports Exerc. 46, 2014, 6: 1159–1165.

[52] Novák, J., Štork, M., Zeman, V.: Stanovení minutového objemu srdečního při spiroergometrickém vyšetření. Plzeň. Lék. Sborn. 77, 2011: 69–72.

[53] Nyholm, B., et al.: Insulin resistance in relatives of NIDDM patients: the role of physical fitness and muscle metabolism. Diabetologia 39, 1996: 813–822.

[54] Odell, T.: VO2max a good predictor of survival rate for patients with coronary artery disease. http://www.medgadget.com/2005.

[55] O’Donovan, G., et al.: The effects of 24 weeks of moderate- or high-intensity exercise on insulin resistance. Eur. J. Appl. Physiol. 95, 2005: 522–528.

[56] Physical activity and cardiovascular health. NIH consensus development panel on physical activity and cardiovascular health. JAMA 276, 1996: 241–246.

[57] Pimentel, A. E., et al.: Greater rate of decline in maximal aerobic capacity with age in endurance-trained than in sedentary men. J. Appl. Physiol. 94, 2003: 2403–2413.

[58] Rogers, M.A., et al.: Decline in VO2max with aging in master athletes and sedentary men. J Appl. Physiol. 68, 1985, 5: 2195–2199.

[59] Saris, W.H., et al.: How much physical activity is enough to prevent unhealthy weight gain? Outcome of the IASO 1st Stock Conference and consensus statement. Obes. Rev. 4, 2003: 101–114.

[60] Scully, D., et al.: Physical exercise and psychological well being: a critical review. Br. J. Sports Med. 32, 1998: 111–120.

[61] Seals, D.R.: Enhanced left ventricular performance in endurance trained older men. Circulation 89, 1994: 198–205.

[62] Seliger, V., Bartůněk, Z.: Mean values of various indices of physical fitness in the investigation of Czechoclovak population aged 12 – 55 years. Praha, ČSTV 1976.

[63] Shephard, R.J.: Aerobic fitness and health. Human Kinetics Publ., Champaign, Ill. 1994.

[64] Sigal, R.J., et al.: Effects of aerobic training, resistance training, or both on glycemic control in Type 2 diabetes. Ann. Intern. Med. 147, 2007: 357–369.

[65] Štork, M., Novák, J., Zeman V.: Noninvasive medical exa-mination and optimal physical activity prescription based on stress test. 14th WSEAS Internat. Confer. on Systems, Greece 2010: 580–584.

[66] Štork, M., Novák, J., Zeman, V.: Cardiac output estimation based on oxygen consumption during exercise test on bicycle ergometer. 8th Internat. Conf. on Measurement, Bratislava 2011: 289–292.

[67] Tibana, R.A., et al.: Resistance training decreases 24-hour blood pressure in women with metabolic syndrome. Diabetol. Metab. Syndr. 27, 2013: 27–32.

[68] Uth, N., et al.: Estimation of VO2max from the ratio between HRmax and HRrest – the Heart Rate Ratio Method. Eur. J. Appl. Physiol. 91, 2004: 111–115.

[69] Valkeinen, H., et al.: Effects of exercise training on oxygen uptake in coronary heart disease: a systematic review and meta-analysis. Scand. J. Med. Sci. Sports 20, 2010: 545–555.

[70] Whelton, S.P., a spol.: Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. (Ann. Intern. Med. 136, 2002: 493–503.

[71] Wilson, T.M., Tanaka, H.: Meta-analysis of the age-associated decline in maximal aerobic capacity in men: relation to training status. Am. J. Physiol. Heart Circ. Physiol. 278, 2000: H829–H834.

[72] Young, D.R., et al.: Associations between changes in physical activity and risk factors for coronary heart disease in

a community-based sample of men and women: the Stanford Five-City Project. Am. J. Epidemiol. 138, 1993: 205–216.

[73] Novák, J.: Kardiorespirační zdatnost sportující populace. Plzeň. lék. Sborn., Suppl. 85, 2015: 7–102.

[74] Placheta, Z.: Submaximal exercise testing. LF UJEP, Brno 1988.

[75] Wahlund, H. (1948): Determination of physical working capacity. Acta Medica Scandinavica Supplementum 215.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#