#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The effect of docetaxel on molecular melting profile of DNA extracted from human breast adenocarcinoma MCF-7 cells


Aim:
The aim of this study was to evaluate the genotoxic effect of docetaxel on the human adenocarcinoma MCF-7 cells to detect genetic variations and discover potential associations between the drug and the genotoxic damage of MCF-7 cells. Materials and Methods: High resolution melt analysis (HRM) of genomic DNA isolated from MCF-7 cells was used. Two primers of MDR1 gene were selected: 5´-TGGGGCTTTTAGTGTTGGAC-3´, 5´-TGTGGAGAGCTGGATAAAGTCA-3´.

Results:
The significant alterations in the melting temperature Tm of DNA treated with docetaxel in the concentrations of 1 µmol/l and 250 µmol/l were observed. Comparing G+C/A+T ratios the increase of the relative content of G, C was detected. Minor changes of the nucleotide content were observed when compared the sequences of DNA for the control and the docetaxel treated group.

Conclusions:
Using MDR1 primer pairs, our results confirmed that MCF-7 cells are susceptible to genomic DNA instability when exposed to docetaxel.

Keywords:
MCF-7 cell line, high-resolution melting analysis, docetaxel


Autoři: Marianna Trebuňová 1;  Ján Rosocha 1;  Galina Laputková 2;  Mario Jančošek 3;  Jozef Živčák 4
Působiště autorů: Associated Tissue Bank UNLP Košice, Rastislavova 4 , 0 1 90 Košice, Slovakia 1;  Department of Medical and Clinical Biophysics, Faculty of Medicine, P. J. Šafarik University 2;  University of Presov in Presov, 17. novembra 15, 080 01 Prešov, Slovakia 3;  Faculty of Mechanical Engineering, Department of Biomedical Engineering and Measurement, Technical University, Letná 9, Košice, Slovak Republic 4;  Trieda SNP 1, Košice, 00 11, Slovakia 4
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2014, 44, 43-48
Kategorie: Původní práce

Souhrn

Aim:
The aim of this study was to evaluate the genotoxic effect of docetaxel on the human adenocarcinoma MCF-7 cells to detect genetic variations and discover potential associations between the drug and the genotoxic damage of MCF-7 cells. Materials and Methods: High resolution melt analysis (HRM) of genomic DNA isolated from MCF-7 cells was used. Two primers of MDR1 gene were selected: 5´-TGGGGCTTTTAGTGTTGGAC-3´, 5´-TGTGGAGAGCTGGATAAAGTCA-3´.

Results:
The significant alterations in the melting temperature Tm of DNA treated with docetaxel in the concentrations of 1 µmol/l and 250 µmol/l were observed. Comparing G+C/A+T ratios the increase of the relative content of G, C was detected. Minor changes of the nucleotide content were observed when compared the sequences of DNA for the control and the docetaxel treated group.

Conclusions:
Using MDR1 primer pairs, our results confirmed that MCF-7 cells are susceptible to genomic DNA instability when exposed to docetaxel.

Keywords:
MCF-7 cell line, high-resolution melting analysis, docetaxel


Zdroje

[1] Vriens, B. E. P. J., Lobbezoo, D. J. A., de Hoon, J. P. J., Veeck, J., Voogd, A. C., Tjan-Heijnen, V. C. G.: If there is no overall survival benefit in metastatic breast cancer: Does it imply lack of efficacy? Taxanes as an example. Cancer Treatment Reviews 39, 2013, 189–198.

[2] Kim, S. J., Noguchi, S.: Prediction of response to docetaxel in breast cancer. Gan To Kagaku Ryoho 35, 2008, 190–193.

[3] Ringel, I., Horwitz, S. B.: Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol, J Natl Cancer Inst 83, 1991, 288–291.

[4] De Hoon, J. P. J., Veeck, J., Vriens, B .E. P. J., Calon, T. G. A., van Engeland, M., Tjan-Heijnen, V. C. G.: Taxane resistance in breast cancer: A closed HER2 circuit? Biochimica et Biophysica Acta 1825, 2012, 197–206.

[5] Torres, K., Horwitz, S. B.: Mechanisms of Taxol-induced cell death are concentration dependent. Cancer Res 58, 1998, 3620–3626.

[6] Moos, P. J., Fitzpatrick, F. A.: Taxanes propagate apoptosis via two cell populations with distinctive cytological and molecular traits. Cell Growth Differ 9, 1998, 687–697.

[7] Ieiri, I., Takane, H., Otsubo, K.: The MDR1 (ABCB1) gene polymorphism and its clinical implications. Clin Pharmacokinet 43, 2004, 553–576.

[8] Cao, D-X., Qiao, B., Ge, Z-Q., Yuan, Y-J.: Comparison of burst of reactive oxygen species and activation of caspase-3 in apoptosis of K562 and HL-60 cells induced by docetaxel. Cancer Letters 214, 2004, 103–113.

[9] Iida, S., Shimada, J., Sakagami, H.: Cytotoxicity induced by docetaxel in human oral squamous cell carcinoma cell lines in vivo. 27, 2013, 321–332.

[10] Saleh, E. M., El-awady, R. A., Anis, N., El-sharkawy, N.: Induction and repair of DNA double-strand breaks using constant-field gel electrophoresis and apoptosis as predictive markers for sensitivity of cancer cells to cisplatin. Biomedicine & Pharmacotherapy 66, 2012, 554-562.

[11] Gonzalez-Angulo, A. M., Morales-Vasquez, F., Hortobagyi, G. N.: Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol, 2007, 608: 1–22.

[12] He, S., Liu, F., Xie, Z., Zu, X., Xu, W., Jiang, Y.: P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells. Int J Mol Sci 11, 2010, 3309-051.

[13] Zhang, F., Zhang, H., Wang, Z., Yu, M., Tian, R., Ji, W., Yang, Y., Niu, R.., P. Glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochemical Pharmacology 2013.

[14] Takano, E. A., Mitchell, G., Fox, S. B., Dobrovic, A.: Rapid detection of carriers with BRCA1 and BRCA2 mutations using high resolution melting analysis. BMC Cancer 59, 8, 2008.

[15] Reed, G. H., Wittwer, C. T.: Sensitivity and specificity of SNP scanning by high-resolution melting analysis. Clin Chem 50, 2004, 1748-1754.

[16] Trebuňová, M., Laputková, G., Lacjaková, K., Verebová, A., Géci, I., Sabo, J.: Molecular melting profile of MDR1 gene in doxorubicin and docetaxel treated MCF-7 and natural MCF-7 cell line. European Journal of Experimental Biology 2, 2012, 449-453.

[17] Sung-Tsai, Y., Tzer-Ming, Ch., Shih-Yun, T., Yen-Hui, Ch.: Tryptanthrin inhibits MDR1 and reverses doxorubicin resistance in breast cancer cells. Biochem Biophys Res Commun 358, 2007, 79-84.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#