Gene expression profiling after angiogenesis inhibitor treatment


The angiogenic process can be summarized as cell activation by a lack of oxygen releases angiogenic molecules that attract inflammatory and endothelial cells and promote their proliferation. Several protein fragments produced by the digestion of the blood-vessel walls intensify the proliferative activity of endothelial cells. Acetyl salicylic acid is often used as an analgesic drug to relieve minor aches and pains, a drug with antitumour activity and an anti-inflammatory medication. In our experiments we propose using the angiogenesis model and photodynamic therapy (PDT) for observing changes in angiogenesis after treatment, and also for increasing the effect of PDT by addition of angiogenesis inhibitors.

Keywords:
angiogenesis, photodynamic therapy, acetyl salicylic acid


Autoři: Adéla Hanáková 1,2;  Klara Pizova 1,2;  Outi Huttala 3;  Jertta-Riina Sarkanen 3;  Tuula Heinonen 3;  Dagmar Jirova 4;  Kristina Kejlova 4;  Hana Kolarova 1,2
Působiště autorů: Department of Medical Biophysics, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic 1;  Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry Palacky University, Olomouc, Czech Republic 2;  Finnish Center for Alternative Methods, Medical School, University of Tampere, Tampere, Finland 4National Institute of Public Health, Prague, Czech Republic 3
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2014, 44, 33-38
Kategorie: Původní práce

Souhrn

The angiogenic process can be summarized as cell activation by a lack of oxygen releases angiogenic molecules that attract inflammatory and endothelial cells and promote their proliferation. Several protein fragments produced by the digestion of the blood-vessel walls intensify the proliferative activity of endothelial cells. Acetyl salicylic acid is often used as an analgesic drug to relieve minor aches and pains, a drug with antitumour activity and an anti-inflammatory medication. In our experiments we propose using the angiogenesis model and photodynamic therapy (PDT) for observing changes in angiogenesis after treatment, and also for increasing the effect of PDT by addition of angiogenesis inhibitors.

Keywords:
angiogenesis, photodynamic therapy, acetyl salicylic acid


Zdroje

[1] Rivron, N. C., Liu, J., Rouwkema, J., Boer de, J., Blitterswijk van, C. A. Engineering vascularised tissues in vitro. European Cells & Materials, 2008, vol. 15. p. 27-40.

[2] Moon, J. J, West, J. L. Vascularization of engineered tisssues: approaches to promote angiogenesis in biomaterials. Current Topics in Medicinal Chemistry, 2008, vol. 8, no. 4, p. 300-310 (11).

[3] Papetti, M., Herman, I. M. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol., 2002, vol. 282, no. 5, p. C947-70.

[4] Klagsbrun, M. and Moses, M. A. Molecular angiogenesis. Chem Biol., 1999, vol. 6, no. 8, p. R217-24.

[5] Carmeliet, P., Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, vol. 473, no. 7347, p. 298-307.

[6] Ferrara, N. Vascular Endothelial Growth Factor. Arterioscler Thromb Vasc Biol., 2009, vol. 29, p. 789-791.

[7] Kühn, M. C, Willenberg, H. S, Schott, M., Papewalis, C., Stumpf, U., Flohé, S., Scherbaum, W. A., Schinner, S. Adipocyte-secreted factors increase osteoblast proliferation and the OPG/RANKL ratio to influence osteoclast formation. Mol Cell Endocrinol., 2012, vol. 349, no. 2, p. 180–188.

[8] Pereira, R. C., Economides, A. N., Canalis, E. Bone morphogenetic proteins induce gremlin, a protein that limits their activity in osteoblasts. Endocrinology, 2000, vol. 141, no. 12, p. 4558–63.

[9] Fan, T. P., Jaggar, R., Bicknell, R. Controlling the vasculature: Angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends in pharmacological science, 1995, vol. 16, no. 2, p. 57–66.

[10] Pinzani, M., Gesualdo, L., Sabbah, G. M., Abboud, H. E. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J Clin Invest., 1989, vol. 84, no. 6, p. 1786–1793.

[11] Mehta, D., Malik, A. B. Signaling Mechanisms Regulating Endothelial Permeability. Physiol Rev., 2006, vol. 86, p. 279-367.

[12] Davis, S., Aldrich, T. H., Jones, P.F., Acheson, A., Compton, D. L., Jain, V., Ryan, T. E., Bruno, J., Radziejewski, C., Maisonpierre, P. C., Yancopoulos, G. D. Isolation of Angiopoietin-1, a Ligand for the TIE2 Receptor, by Secretion-Trap Expression Cloning. Cell, 1996, vol. 87, no. 7, p. 1161–1169.

[13] Gale, N. W., Yancopoulos, G. D. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, Angiopoietins, and ephrins in vascular development. Genes Dev., 1999, vol. 13, no. 9, p. 1055-1066.

[14] Kumar, V., Bustin, S.A., McKay, I. A. Transforming growth factor alpha. Cell Biology International, 1995, vol. 19, no. 5, p. 373–388.

[15] Kolarova, H., Nevrelova, P., Bajgar, R., Jirova, D., Kejlova, K., Strnad, M. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Toxicol In Vitro, 2007,vol. 21, no. 2, p. 249-253.

[16] Kolarova, H., Bajgar, R., Tomankova, K., Nevrelova, P., Mosinger, J. Comparison of sensitizers by detecting reactive oxygen species after photodynamic reaction in vitro. Toxicol In Vitro, 2007, vol. 21, no. 7, p.1287-1291.

[17] Kolarova, H., Lenobel, R., Kolar, P., Strnad, M. Sensitivity of differentcell lines to phototoxiceffect of disulfonated chloroaluminium phthalocyanine. Toxicol In Vitro, 2007, vol. 21, no. 7, p. 1304-1306.

[18] Kolarova, H., Bajgar, R., Tomankova, K., Krestyn, E., Dolezal, L., Halek, J. In vitro study of reactive oxygen species production during photodynamic therapy in ultrasound-pretreated cancer cells. Physiol Res, 2007, vol. 56 Suppl 1), p. S27-32.

[19] Kolarova, H., Nevrelova, P., Tomankova, K., Kolar, P., Bajgar, R., Mosinger, J. Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers. Gen Physiol Biophys, 2008, vol. 27, no. 2, p. 101-105.

[20] Tomankova, K., Kolarova, H., Bajgar, R. Study of photodynamic and sonodynamic effect on A549 cell line by AFM and measurement of ROS production. Phys Stat Sol (a), 2008, vol. 205, no. 6, p. 1472–1477.

[21] Kolarova, H., Tomankova, K., Bajgar, R., Kolar, P., Kubinek, R. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. Ultrasound Med Biol, 2009, vol. 35, no. 8, p. 1397-1404.

[22] Krestyn, E., Kolarova, H., Bajgar, R., Tomankova, K. Photodynamic properties of ZnTPPS4, ClAlPcS2 and ALA in human melanoma G361 cells. Toxicol In Vitro, 2010, vol. 24, no. 1, p. 286-291.

[23] Binder, S., Kolarova, H., Tomankova, K., Bajgar, R., Daskova, A., Mosinger, J. Phototoxic effect of TPPS4 and MgTPPS4 on DNA fragmentation of HeLa cells. Toxicol In Vitro, 2011, vol. 25, no. 6, p. 1169-1172.

[24] Hanakova, A., Bogdanova, K., Tomankova, K., Binder, S., Bajgar, R., Langova, K., Kolar, M., Mosinger, J., Kolarova, H. Study of photodynamic effects on NIH 3T3 cellline and bacteria. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2012, vol. 156, doi: 10.5507/bp.2012.057.

[25] Hanakova, A., Bogdanova, K., Tomankova, K., Pizova, K., Malohlava, J., Binder, S., Bajgar, R., Langova, K., Kolar, M., Mosinger, J., Kolarova, H. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol Res, 2014, vol. 169, no. 2-3, p. 163-170.

[26] Plaetzer, K., Kiesslich, T., Verwanger, T., Krammer, B. The Modes of Cell Death Induced by PDT: An Overview. Med. Laser, 2003, vol. 18, p. 7–19.

[27] Bhuvaneswari, R., Gan, Y. Y., Soo, K. C., Olivo, M. The effect of photodynamic therapy on tumor angiogenesis. Cell. Mol. Life Sci., 2009, vol. 66, no. 14, p. 2275–2283.

[28] Yu, H. G., Huang, J. A., Yang, Y. N., Huang, H., Luo, H. S., Yu, J. P., Meier, J. J., Schrader, H., Bastian, A., Schmidt, W. E., Schmitz, F. The effects of acetylsalicylic acid on proliferation, apoptosis, and invasion of cyclooxygenase-2 negative colon cancer cells. European Journal of Clinical Investigation, 2002, vol. 32, no. 11, p. 838–846.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa