The effect of acetylsalicylic acid on angiogenesis in vitro


Angiogenesis, the formation of new blood vessels, is an essential aspect of, among others, embryonic development, wound healing and the female reproductive cycle. It is also necessary for the expansion of tumour masses beyond a minute volume. Acetylsalicylic acid (ASA) is a non-steroidal anti-inflammatory drug with additional antitumour activity. We tested ASA for its ability to inhibit angiogenesis in a simplified angiogenesis model, hASC+HUVEC co cultured in vitro, using immunocytochemical staining with fluorescence-marked antibodies and observation of tubule-like structures and their branching under a fluorescence microscope. We confirmed that ASA is an efficient and useful angiogenesis inhibitor and deserves further attention. We intend using the designed angiogenesis model and the methods described for observing changes in angiogenesis after anti tumour photodynamic therapy (PDT), and also for enhancing PDT efficiency by addition of angiogenesis inhibitors.

Keywords:
angiogenesis, acetylsalicylic acid, hASC+HUVEC co-culture


Autoři: Klara Pizova 1,2;  Adéla Hanáková 1,2;  Outi Huttala 3;  Jertta-Riina Sarkanen 3;  Tuula Heinonen 3;  Dagmar Jírová 4;  Kristina Kejlova 4;  Hana Kolarova 1,2
Působiště autorů: Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic 1;  Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic 2;  Finnish Center for Alternative Methods, Medical School, University of Tampere, Tampere, Finland 3;  National Institute of Public Health, Prague, Czech Republic 4
Vyšlo v časopise: Lékař a technika - Clinician and Technology No. 1, 2014, 44, 39-42
Kategorie: Původní práce

Souhrn

Angiogenesis, the formation of new blood vessels, is an essential aspect of, among others, embryonic development, wound healing and the female reproductive cycle. It is also necessary for the expansion of tumour masses beyond a minute volume. Acetylsalicylic acid (ASA) is a non-steroidal anti-inflammatory drug with additional antitumour activity. We tested ASA for its ability to inhibit angiogenesis in a simplified angiogenesis model, hASC+HUVEC co cultured in vitro, using immunocytochemical staining with fluorescence-marked antibodies and observation of tubule-like structures and their branching under a fluorescence microscope. We confirmed that ASA is an efficient and useful angiogenesis inhibitor and deserves further attention. We intend using the designed angiogenesis model and the methods described for observing changes in angiogenesis after anti tumour photodynamic therapy (PDT), and also for enhancing PDT efficiency by addition of angiogenesis inhibitors.

Keywords:
angiogenesis, acetylsalicylic acid, hASC+HUVEC co-culture


Zdroje

[1] Auerbach, R., Lewis, R., Shinners, B., Kubai, L., Akhtar, N. Angiogenesis assays: a critical overview. Clin Chem, 2003, vol. 49, no. 1, p. 32-40.

[2] Friis, T., Kjaer, Sørensen, B., Engel, A. M., Rygaard, J., Houen, G. A quantitative ELISA-based co-culture angiogenesis and cell proliferation assay. APMIS, 2003, vol. 111, no. 6, p. 658-668.

[3] Norrby, K. In vivo models of angiogenesis. J Cell Mol Med, 2006, vol. 10, no. 3, p. 588-612.

[4] Sarkanen, J. R., Mannerström, M., Vuorenpää, H., Uotila, J., Ylikomi, T., Heinonen, T. Intra-Laboratory Pre-Validation of a Human Cell Based in vitro Angiogenesis Assay for Testing Angiogenesis Modulators. Front Pharmacol, 2011, vol. 147, no. 1. doi: 10.3389/fphar.2010.00147.

[5] Donovan, D., Brown, N. J., Bishop, E. T., Lewis, C. E. Comparison of three in vitro human 'angiogenesis' assays with capillaries formed in vivo. Angiogenesis, 2001, vol. 4, no. 2, p. 113-121.

[6] García-Rodríguez, L. A., Huerta-Alvarez, C. Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal antiinflammatory drugs. Epidemi-ology, 2001, vol. 12, no. 1, p. 88-93.

[7] Flossmann, E., Rothwell, P. M. British Doctors Aspirin Trial and the UK-TIA Aspirin Trial. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet, 2007, vol. 369, no. 9573, p. 1603-1613.

[8] Rothwell, P. M., Wilson, M., Elwin, C. E., Norrving, B., Algra, A., Warlow, C. P., Meade, T. W. Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet, 2010, vol. 376, no. 9754, p. 1741-1750.

[9] Benamouzig, R., Uzzan, B., Martin, A., Deyra, J., Little, J., Girard, B., Chaussade, S. APACC Study Group. Cyclooxy-genase-2 expression and recurrence of colorectal adenomas: effect of aspirin chemoprevention. Gut, 2010, vol. 59, no. 5, p. 622-629.

[10] Benamouzig, R., Uzzan, B., Deyra, J., Martin, A., Girard, B., Little, J., Chaussade, S. Association pour la Prévention par l'Aspirine du Cancer Colorectal Study Group (APACC). Prevention by daily soluble aspirin of colorectal adenoma recurrence: 4-year results of the APACC randomised trial. Gut, 2012, vol. 61, no. 2, p. 255-261.

[11] Zubiaurre, L., Bujanda Fernández de Pierola, L. Aspirin in the prevention of colorectal cancer. Gastroenterol Hepatol, 2011, vol. 34, no. 5, p. 337-345.

[12] Dhillon, P. K., Kenfield, S. A., Stampfer, M. J., Giovannucci, E. L., Chan, J. M. Aspirin use after a prostate cancer diagnosis and cancer survival in a prospective cohort. Cancer Prev Res (Phila), 2012, vol. 5, no. 10, p. 1223-1228.

[13] Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F., Meade, T. W., Mehta, Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet, 2012, vol. 379, no. 9826, p. 1591-1601.

[14] Zhang, X., Wang, Z., Wang, Z., Zhang, Y., Jia, Q., Wu, L., Zhang, W. Impact of acetylsalicylic acid on tumor angiogenesis and lymphangiogenesis through inhibition of VEGF signaling in a murine sarcoma model. Oncol Rep, 2013, vol. 29, no. 5, p. 1907-1913.

[15] Dermond, O., Rüegg, C. Inhibition of tumor angiogenesis by non-steroidal anti-inflammatory drugs: emerging mechanisms and therapeutic perspectives. Drug Resist Updat, 2001, vol. 4, no. 5, p. 314-321.

[16] Monnier, Y., Zaric, J., Rüegg, C. Inhibition of angiogenesis by non-steroidal anti-inflammatory drugs: from the bench to the bedside and back. Curr Drug Targets Inflamm Allergy, 2005, vol. 4, no. 1, p. 31-38.

[17] Kolarova, H., Nevrelova, P., Bajgar, R., Jirova, D., Kejlova, K., Strnad, M. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Toxicol In Vitro, 2007, vol. 21, no. 2, p. 249-253.

[18] Kolarova, H., Bajgar, R., Tomankova, K., Nevrelova, P., Mosinger, J. Comparison of sensitizers by detecting reactive oxygen species after photodynamic reaction in vitro. Toxicol In Vitro, 2007, vol. 21, no. 7, p.1287-1291.

[19] Kolarova, H., Lenobel, R., Kolar, P., Strnad, M. Sensitivity of differentcell lines to phototoxiceffect of disulfonated chloroaluminium phthalocyanine. Toxicol In Vitro, 2007, vol. 21, no. 7, p. 1304-1306.

[20] Kolarova, H., Bajgar, R., Tomankova, K., Krestyn, E., Dolezal, L., Halek, J. In vitro study of reactive oxygen species production during photodynamic therapy in ultrasound-pretreated cancer cells. Physiol Res, 2007, vol. 56 (Suppl 1), p. S27-32.

[21] Kolarova, H., Nevrelova, P., Tomankova, K., Kolar, P., Bajgar, R., Mosinger, J. Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers. Gen Physiol Biophys, 2008, vol. 27, no. 2, p. 101-105.

[22] Tomankova, K., Kolarova, H., Bajgar, R. Study of photodynamic and sonodynamic effect on A549 cell line by AFM and measurement of ROS production. Phys Stat Sol (a), 2008, vol. 205, no. 6, p. 1472–1477.

[23] Kolarova, H., Tomankova, K., Bajgar, R., Kolar, P., Kubinek, R. Photodynamic and sonodynamic treatment by phthalocyanine on cancer cell lines. Ultrasound Med Biol, 2009, vol. 35, no. 8, p. 1397-1404.

[24] Krestyn, E., Kolarova, H., Bajgar, R., Tomankova, K. Photodynamic properties of ZnTPPS4, ClAlPcS2 and ALA in human melanoma G361 cells. Toxicol In Vitro, 2010, vol. 24, no. 1, p. 286-291.

[25] Binder, S., Kolarova, H., Tomankova, K., Bajgar, R., Daskova, A., Mosinger, J. Phototoxic effect of TPPS4 and MgTPPS4 on DNA fragmentation of HeLa cells. Toxicol In Vitro, 2011, vol. 25, no. 6, p. 1169-1172.

[26] Hanakova, A., Bogdanova, K., Tomankova, K., Binder, S., Bajgar, R., Langova, K., Kolar, M., Mosinger, J., Kolarova, H. Study of photodynamic effects on NIH 3T3 cell line and bacteria. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2012, vol. 156, doi: 10.5507/bp.2012.057.

[27] Hanakova, A., Bogdanova, K., Tomankova, K., Pizova, K., Malohlava, J., Binder, S., Bajgar, R., Langova, K., Kolar, M., Mosinger, J., Kolarova, H. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Microbiol Res, 2014, vol. 169, no. 2-3, p. 163-170.

[28] Kudinova, N.V., Berezov, T.T. Photodynamic Therapy of Cancer: Search For Ideal Photosensitizer. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2010, vol. 4, no. 1, pp. 95–103.

[29] Agostinis, P., Berg, K., Cengel, K.A., Foster, T.H., Girotti, A.W., Gollnick, S.O., Hahn, S.M., Hamblin, M.R., Juzeniene, A., Kessel, D., Korbelik, M., Moan, J., Mroz, P., Nowis, D., Piette, J., Wilson, B.C., Golab, J. Photodynamictherapy of cancer: an update. CA Cancer J Clin, 2011, vol. 61, no. 4, p. 250-281.

Štítky
Biomedicína
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa