#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Depletion of neural stem cells from the subventricular zone of adult mouse brain using cytosine b-Arabinofuranoside


Introduction:
Neural stem cells (NSCs) reside along the ventricular axis of the mammalian brain. They divide infrequently to maintain themselves and the down-stream progenitors. Due to the quiescent property of NSCs, attempts to deplete these cells using antimitotic agents such as cytosine b-Aarabinofuranoside (Ara-C) have not been successful. We hypothesized that implementing infusion gaps in Ara-C kill paradigms would recruit the quiescent NSCs and subsequently eliminate them from their niches in the subventricular zone (SVZ).

Methods:
We infused the right lateral ventricle of adult mice brain with 2% Ara-C using four different paradigms—1: one week; 2: two weeks; 3, 4: two weeks with an infusion gap of 6 and 12 h on day 7. Neurosphere assay (NSA), neural colony-forming cell assay (N-CFCA) and immunofluorescent staining were used to assess depletion of NSCs from the SVZ.

Results:
Neurosphere formation dramatically decreased in all paradigms immediately after Ara-C infusion. Reduction in neurosphere formation was more pronounced in the 3rd and 4th paradigms. Interestingly 1 week after Ara-C infusion, neurosphere formation recovered toward control values implying the presence of NSCs in the harvested SVZ tissue. Unexpectedly, N-CFCA in the 3rd paradigm, as one of the most effective paradigms, did not result in formation of NSC-derived colonies (colonies >2 mm) even from SVZs harvested 1 week after completion of Ara-C infusion. However, formation of big colonies with serial passaging capability, again confirmed the presence of NSCs.

Conclusions:
Overall, these data suggest Ara-C kill paradigms with infusion gaps deplete NSCs in the SVZ more efficiently but the niches would repopulate even after the most vigorous kill paradigm used in this study

Keywords:
Ara-C infusion; neural stem cell depletion; neural colony-forming cell assay; neurosphere assay; subventricular zone


Autoři: Amir Ghanbari 1;  †;  Tahereh Esmaeilpour 1;  †;  Soghra Bahmanpour 1;  Mohammad Ghasem Golmohammadi 2;  Sharareh Sharififar Andhassan Azari 3 1,4,*
Působiště autorů: Neural Stem Cell and Regenerative Neuroscience Laboratory, Department of Anatomical Sciences, Shiraz School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran 1;  Department of Anatomical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran 2;  Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 3;  Neural Stem Cell and Regenerative Neuroscience Laboratory, Shiraz Stem Cell Institute, Shiraz University of Medical Sciences, Shiraz, Iran †Authors contributed equally in this study. 4
Vyšlo v časopise: Brain and Behavior, 11, 2015, č. 5, s. 1-12
prolekare.web.journal.doi_sk: https://doi.org/10.1002/brb3.404

© 2015 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Souhrn

Introduction:
Neural stem cells (NSCs) reside along the ventricular axis of the mammalian brain. They divide infrequently to maintain themselves and the down-stream progenitors. Due to the quiescent property of NSCs, attempts to deplete these cells using antimitotic agents such as cytosine b-Aarabinofuranoside (Ara-C) have not been successful. We hypothesized that implementing infusion gaps in Ara-C kill paradigms would recruit the quiescent NSCs and subsequently eliminate them from their niches in the subventricular zone (SVZ).

Methods:
We infused the right lateral ventricle of adult mice brain with 2% Ara-C using four different paradigms—1: one week; 2: two weeks; 3, 4: two weeks with an infusion gap of 6 and 12 h on day 7. Neurosphere assay (NSA), neural colony-forming cell assay (N-CFCA) and immunofluorescent staining were used to assess depletion of NSCs from the SVZ.

Results:
Neurosphere formation dramatically decreased in all paradigms immediately after Ara-C infusion. Reduction in neurosphere formation was more pronounced in the 3rd and 4th paradigms. Interestingly 1 week after Ara-C infusion, neurosphere formation recovered toward control values implying the presence of NSCs in the harvested SVZ tissue. Unexpectedly, N-CFCA in the 3rd paradigm, as one of the most effective paradigms, did not result in formation of NSC-derived colonies (colonies >2 mm) even from SVZs harvested 1 week after completion of Ara-C infusion. However, formation of big colonies with serial passaging capability, again confirmed the presence of NSCs.

Conclusions:
Overall, these data suggest Ara-C kill paradigms with infusion gaps deplete NSCs in the SVZ more efficiently but the niches would repopulate even after the most vigorous kill paradigm used in this study

Keywords:
Ara-C infusion; neural stem cell depletion; neural colony-forming cell assay; neurosphere assay; subventricular zone


Zdroje

1. Azari, H., M. Rahaman, S. Sh arififar, and B. A. Reynolds. 2010. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J. Vis. Exp. 45:e2393.

2. Azari, H., S. A. Louis, S. Sharififar, V. Vedam-Mai, and B. A. Reynolds. 2011. Neural-colony forming cell assay: an assay to discriminate bona fide neural stem cells from neural progenitor cells J. Vis. Exp. 49:e2639.

3. Azari, H., S. Sharififar, J. M. Fortin, and B. A. Reynolds. 2012. The neuroblast assay: an assay for the generation and enrichment of neuronal progenitor cells from differentiating neural stem cell progeny using flow cytometry.. J. Vis. Exp. 62:e3712.

4. Chojnacki, A. K., G. K. Mak, and S. Weiss. 2009. Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat. Rev. Neurosci. 10:153–163.

5. Codega, P., V. Silva-Vargas, A. Paul, A. R. Maldonado-Soto, A. M. Deleo, E. Pastrana, et al. 2014. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82:545–559.

6. Craig, C. G., V. Tropepe, C. M. Morshead, B. A. Reynolds, S. Weiss, and D. Van Der Kooy. 1996. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J. Neurosci. 16:2649–2658.

7. Deleyrolle, L. P., G. Ericksson, B. J. Morrison, J. A. Lopez, K. Burrage, P. Burrage, et al. 2011. Determination of somatic and cancer stem cell self-renewing symmetric division rate using sphere assays. PLoS One 6:e15844.

8. Doetsch, F., J. M. Garcia-Verdugo, and A. Alvarez-Buylla. 1997. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17:5046–5061.

9. Doetsch, F., I. Caille, D. A. Lim, J. M. Garcia-Verdugo, and A. Alvarez-Buylla. 1999a. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

10. Doetsch, F., J. M. Garcia-Verdugo, and A. Alvarez-Buylla. 1999b. Regeneration of a germinal layer in the adult mammalian brain.Proc. Natl Acad. Sci. USA 96:11619–11624.

11. Golmohammadi, M. G., D. G. Blackmore, B. Large, H. Azari, E. Esfandiary, G. Paxinos, et al. 2008. Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain. Stem Cells 26:979–987.

12. Lim, D. A., A. D. Tramontin, J. M. Trevejo, D. G. Herrera, J. M. García-Verdugo, and A. Alvarez-Buylla. 2000. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726.

13. Louis, S. A., R. L. Rietze, L. Deleyrolle, R. E. Wagey, T. E. Thomas, A. C. Eaves, et al. 2008. Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay. Stem Cells 26:988–996.

14. Mercier, F., J. T. Kitasako, and G. I. Hatton. 2002. Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 451:170–188.

15. Mirzadeh, Z., F. T. Merkle, M. Soriano-Navarro, J. M. Garcia-Verdugo, and A. Alvarez-Buylla. 2008. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278.

16. Morshead, C. M., B. A. Reynolds, C. G. Craig, M. W. McBurney, W. A. Staines, D. Morassutti, et al. 1994. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082.

17. Pastrana, E., L. C. Cheng, and F. Doetsch. 2009. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc. Natl Acad. Sci. USA 106:6387–6392.

18. Reya, T., S. J. Morrison, M. F. Clarke, and I. L. Weissman. 2001. Stem cells, cancer, and cancer stem cells. Nature 414:105–111.

19. Reynolds, B. A., and S. Weiss. 1992. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.

20. Riquelme, P. A., E. Drapeau, and F. Doetsch. 2008. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain.Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:123–137.

21. Sachewsky, N., R. Leeder, W. Xu, K. L. Rose, F. Yu, D. Van Der Kooy, et al. 2014. Primitive neural stem cells in the adult mammalian brain give rise to GFAP-expressing neural stem cells. Stem cell reports 2:810–824.

22. Shen, Q., Y. Wang, E. Kokovay, G. Lin, S. M. Chuang, S. K. Goderie, et al. 2008. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300.

23. Siebzehnrubl, F. A., V. Vedam-Mai, H. Azari, B. A. Reynolds, and L. P. Deleyrolle. 2011. Isolation and characterization of adult neural stem cells. Methods Mol. Biol. 750:61–77.

24. Silva-Vargas, V., E. E. Crouch, and F. Doetsch. 2013. Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr. Opin. Neurobiol. 23:935–942.

Štítky
Neurológia
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#