Galectins and diabetes mellitus
Authors:
Andrej Dukát 1; Juraj Payer 1; Peter Jackuliak 1; Ján Kyselovič 2; Andrea Gažová 2; Martin Jankovský 1; Samuel Nachtmann 1; Juraj Smaha 1
Authors‘ workplace:
V. interná klinika LF UK a UNB, Nemocnica Ružinov, Bratislava
1; Ústav farmakológie a klinickej farmakológie LF UK v Bratislave
2
Published in:
Forum Diab 2025; 14(2): 130-132
Category:
Review Article
Overview
Causal link between obesity, insulin resistance and inflammation are at present the known in their patophysiologic relationships. However, affecting an inflammatory mediators as TNF-α and IL-1β among patient have not improved an insulin sensitivity. It is supposed, that the possible such target between an inflammation and insulin sensitivity may be galectin-3. Gallectins have been described in 1994 as a group of betagalactoside-binding lectins, up today such identified about 15. They are classified into three main groups after their structure and carbo-hydrate binding domains. About place and functions of galectins in human pathology we are still not clear, but supposed is the place as prognostic biomarkers. This review describes some of the connections to type-2 diabetes mellitus.
Keywords:
type 2 diabetes mellitus – biomarkers – galectins – galectin 3
Sources
Hsieh SH, Ying NW, Wu MH et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene 2008; 27(26): 3746–53. Dostupné z DOI: <http://dx.doi.org/10.1038/sj.onc.1211029>.
Liu Y, Meng H, Xu S et al. Galectins for Diagnosis and Prognostic Assessment of Human Diseases: An Overview of Meta-Analyses. Med Sci Monit 2020; 26: e923901. Dostupné z DOI: <http://dx.doi.org/10.12659MSM.923901>.
Laaf D, Bojarova P, Elling L et al. Galectin-Carbohydrate Interactions in Biomedicine and Biotechnology. Trends in Biotechol 2019; 37(4): 402–415. Dostupné z DOI: <http://dx.doi.org/10.1016/j.tibtech.2018.10.001>.
Siwicki M, Engblom C, Pittet MJ. Gal3 Links Inflammation and Insulin Resistance. Cell Metabolism 2016; 24(5): 655–656. Dostupné z DOI: <http://dx.doi.org/10.1016/j.cmet.2016.10.014>.
Bouffette S, Botez I, DeCeuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44(8): 8 : 519–531. Dostupné z DOI: <http://dx.doi.org/10.1016/j.tips.2023.06.001>.
Sciacchitano S, Lavra L, Morgante A et al. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19(2): 379. Dostupné z DOI: <http://dx.doi.org/10.3390/ijms19020379>.
Liu FT, Stowell SR. The role of galectins in imunity and infection. Nat Rev Immunol 2023; 23(8): 479–494. Dostupné z DOI: <http://dx.doi.org/10.1038/s41577–022–00829–7>.
Dukát A, Payer J, Kyselovič J et al. Galektín 3 ako biomarker v kardiologickej praxi. Lek Obz 2025; 74(9): 343–347.
Hara A, Niwa M, Noguchi K et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules 2020; 10(3): 389. Dostupné z DOI: <http://dx.doi.org/10.3390/biom10030389>.
Dong R, Zhang M, Hu Q et al. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy. Int J Molecul Med 2018; 41(2): 599–614. Dostupné z DOI: <http://dx.doi.org/10.3892/ijmm.2017.3311>.
Corapi E, Carrizo G, Compagno D et al. Endogenous galectin-1 in T lymphocytes regulates anti-prostate cancer immunity. Front Immunol 2018; 9 : 2190. Dostupné z DOI: <http://dx.doi.org/10.3389/fimmu.2018.02190>.
Michael JV, Wurtzel JG, Goldfinger LE. Inhibition of galectin-1 sensitizes HRAS-driven tumor growth to rapamycin treatment. Anticancer Res 2016; 36(10): 5053–5061. Dostupné z DOI: <http://dx.doi.org/10.21873/anticanres.11074>.
Zannad F. Seeking Multiorgan Benefits with Cardiovascular-Kidney-Metabolic Drug Therapy. N Engl J Med 2025; 392(20): 2061–2062. Dostupné z DOI: <http://dx.doi.org/ 10.1056/NEJMe2503600>.
Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev 2016; 12(1): 15–28. Dostupné z DOI: <http://dx.doi.org/10.1038/nrendo.2015.189>.
Weigert J, Neumeier M, Wanninger J et al. Serum galectin-3 is elevated in obesity and negatively correlates with glycosylated hemoglobin in type 2 diabetes. J Clin Endocrinol Metab 2010; 95(3):1404–1411. Dostupné z DOI: <http://dx.doi.org/10.1210/jc.2009–1619>.
Fryk E, Strindberg L, Lundqvist A et al. Galectin-1 is inversely associated with type 2 diabetes independently of obesity – a SCAPIS pilot study. Metabolism Open 2019; 4 : 100017. Dostupné z DOI: <http://dx.doi.org/10.1016/j.metop.2019.100017>.
Acar S, Paketci A, Kume T et al. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children. Peptides 2017; 95 : 51–56. Dostupné z DOI: <http://dx.doi.org/10.1016/j.peptides.2017.07.009>.
Fryk E, Sundelin JP, Strindberg L et al. Microdialysis and proteomics of subcutaneous interstitial fluid reveals increased galectin-1 in type 2 diabetes patients. Metab Clin Exp 2016; 65(7): 998–1006. Dostupné z DOI: <http://dx.doi.org/10.1016/j.metabol.2016.04.003>.
Roumans NJT, Vink RG, Bouwman FG et al. Weight loss-induced cellular stress in subcutaneous adipose tissue and the risk for weight regain in overweight and obese adults. Int J Obes 2017; 41(6): 894–901. Dostupné z DOI: <http://dx.doi.org/10.1038/ijo.2016.221>.
Bergstrom G, Berglund G, Blomberg A et al. The Swedish CArdioPulmonary BioImage Study: objectives and design. J Intern Med 2015; 278(6): 645–59. Dostupné z DOI: <http://dx.doi.org/10.1111/joim.12384>.
Matthews DR, Hosker JP, Rudenski AS et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412–419. Dostupné z DOI: <http://dx.doi.org/10.1007/BF00280883>.
Blois SM, Gueuvoghlanian-Silva BY, Tirado-Gonzalez I et al. Getting too sweet: galectin-1 dysregulation in gestational diabetes mellitus. Mol Hum Reprod 2014; 20(7): 644–649. Dostupné z DOI: <http://dx.doi.org/10.1093/molehr/gau021>.
Dukát A, Jackuliak P, Kyselovič J et al. Kardiovaskulárny-renálny-metabolický syndróm: novodefinovaná klinická jednotka. Lek Obz 2025; 74(1): 21–27.
Labels
Diabetology Endocrinology Internal medicineArticle was published in
Forum Diabetologicum
2025 Issue 2
-
All articles in this issue
- Cardiovascular obesity – challenges in the diagnosis and management of obese patients: editorial
- Current status of dyslipidemia control in patients with type 1 diabetes mellitus in Slovakia
- Evaluation of left ventricular and left atrial deformation parameters in obese patients
- New perspectives in the treatment of obesity in type 2 diabetics with cardiovascular diseases
- Combined potential of SGLT2i and GLP1 RA mechanisms in organ protection
- Aortic stenosis in obese patients
- Use of POCUS in obese patients
- Biofeedback – importance in therapeutic management of obesity
- Hepatoprotective effects of empagliflozin in the treatment of patients with type 2 diabetes
- Galectins and diabetes mellitus
- Cardiovascular and metabolic complications associated with acromegaly
- Ten years with empagliflozin – change of paradigm in the treatment of type 2 diabetes mellitus
- Notice on blood pressure control in patients with type 2 diabetes mellitus
- 61st Annual Congress of the European Association for the Study of Diabetes
- Forum Diabetologicum
- Journal archive
- Current issue
- About the journal
Most read in this issue
- Cardiovascular obesity – challenges in the diagnosis and management of obese patients: editorial
- Evaluation of left ventricular and left atrial deformation parameters in obese patients
- New perspectives in the treatment of obesity in type 2 diabetics with cardiovascular diseases
- Combined potential of SGLT2i and GLP1 RA mechanisms in organ protection