#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Quantitative Models of the Dose-Response and Time Course of Inhalational Anthrax in Humans


Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing mechanistic competing-risks model to create a novel Exposure–Infection–Symptomatic illness–Death (EISD) model and use experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence interval 7,200–17,000), ID10 of 1,700 (1,100–2,600), and ID1 of 160 (100–250). These estimates suggest that use of a threshold to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7–13.1) for exposure to ID50, 11.8 days (9.5–15.0) for ID10, and 12.1 days (9.9–15.3) for ID1. Our model is the first to provide incubation period estimates that are independently consistent with data from the largest known human outbreak. This model refines previous estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course of prophylactic antibiotic treatment for individuals exposed to low doses.


Vyšlo v časopise: Quantitative Models of the Dose-Response and Time Course of Inhalational Anthrax in Humans. PLoS Pathog 9(8): e32767. doi:10.1371/journal.ppat.1003555
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1003555

Souhrn

Anthrax poses a community health risk due to accidental or intentional aerosol release. Reliable quantitative dose-response analyses are required to estimate the magnitude and timeline of potential consequences and the effect of public health intervention strategies under specific scenarios. Analyses of available data from exposures and infections of humans and non-human primates are often contradictory. We review existing quantitative inhalational anthrax dose-response models in light of criteria we propose for a model to be useful and defensible. To satisfy these criteria, we extend an existing mechanistic competing-risks model to create a novel Exposure–Infection–Symptomatic illness–Death (EISD) model and use experimental non-human primate data and human epidemiological data to optimize parameter values. The best fit to these data leads to estimates of a dose leading to infection in 50% of susceptible humans (ID50) of 11,000 spores (95% confidence interval 7,200–17,000), ID10 of 1,700 (1,100–2,600), and ID1 of 160 (100–250). These estimates suggest that use of a threshold to human infection of 600 spores (as suggested in the literature) underestimates the infectivity of low doses, while an existing estimate of a 1% infection rate for a single spore overestimates low dose infectivity. We estimate the median time from exposure to onset of symptoms (incubation period) among untreated cases to be 9.9 days (7.7–13.1) for exposure to ID50, 11.8 days (9.5–15.0) for ID10, and 12.1 days (9.9–15.3) for ID1. Our model is the first to provide incubation period estimates that are independently consistent with data from the largest known human outbreak. This model refines previous estimates of the distribution of early onset cases after a release and provides support for the recommended 60-day course of prophylactic antibiotic treatment for individuals exposed to low doses.


Zdroje

1. HendersonDA (1999) The looming threat of bioterrorism. Science 283: 1279–1282.

2. WebbGF (2003) A silent bomb: the risk of anthrax as a weapon of mass destruction. Proc Natl Acad Sci USA 100: 4355–4356.

3. World Health Organization (2008) Anthrax in Humans and Animals. Geneva: WHO Press. 208 p.

4. Centers for Disease Control and Prevention (CDC) (2010) Gastrointestinal anthrax after an animal-hide drumming event - New Hampshire and Massachusetts, 2009. MMWR Morb Mortal Wkly Rep 59: 872–877.

5. BoothMG, HoodJ, BrooksTJ, HartA (2010) Anthrax infection in drug users. Lancet 375: 1345–1346.

6. GuhA, HeymanML, BardenD, FontanaJ, HadlerJL (2010) Lessons learned from the investigation of a cluster of cutaneous anthrax cases in Connecticut. J Public Health Manag Pract 16: 201–210.

7. MeselsonM, GuilleminJ, Hugh-JonesM, LangmuirA, PopovaI, et al. (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266: 1202–1208.

8. GreeneCM, ReefhuisJ, TanC, FioreAE, GoldsteinS, et al. (2002) Epidemiologic investigations of bioterrorism-related anthrax, New Jersey, 2001. Emerg Infect Dis 8: 1048–1055.

9. WeinLM, CraftDL, KaplanEH (2003) Emergency response to an anthrax attack. Proc Natl Acad Sci USA 100: 4346–4351.

10. CraftDL, WeinLM, WilkensAH (2005) Analyzing bioterror response logistics: The case of anthrax. Management Science 51: 679–694.

11. IsukapalliSS, LioyPJ, GeorgopoulosPG (2008) Mechanistic modeling of emergency events: assessing the impact of hypothetical releases of anthrax. Risk Anal 28: 723–740.

12. IOM (Institute of Medicine) (2012) Prepositioning antibiotics for anthrax. Washington, DC: National Academies Press. 343 p.

13. United States Government Accountability Office (2005) Anthrax detection: agencies need to validate sampling activities in order to increase confidence in negative results. Washington, DC: United States Government Accountability Office. 113 p.

14. United States Government Accountability Office (2012) Anthrax: DHS faces challenges in validating methods for sample collection and analysis. Washington, D.C.: United States Government Accountability Office. 108 p.

15. WilkeningDA (2006) Sverdlovsk revisited: modeling human inhalation anthrax. Proc Natl Acad Sci USA 103: 7589–7594.

16. WebbGF, BlaserMJ (2002) Mailborne transmission of anthrax: Modeling and implications. Proc Natl Acad Sci USA 99: 7027–7032.

17. CohenML, WhalenT (2007) Implications of low level human exposure to respirable B. anthracis. Applied Biosafety 12: 109–115.

18. HaasCN (2002) On the risk of mortality to primates exposed to anthrax spores. Risk Anal 22: 189–193.

19. BartrandTA, WeirMH, HaasCN (2008) Dose-response models for inhalation of Bacillus anthracis spores: interspecies comparisons. Risk Anal 28: 1115–1124.

20. ColemanME, ThranB, MorseSS, Hugh-JonesM, MassulikS (2008) Inhalation anthrax: dose response and risk analysis. Biosecur Bioterror 6: 147–160.

21. HongT, GurianPL, HuangY, HaasCN (2012) Prioritizing risks and uncertainties from intentional release of selected Category A pathogens. PLoS One 7: e32732.

22. FennellyKP, DavidowAL, MillerSL, ConnellN, EllnerJJ (2004) Airborne infection with Bacillus anthracis–from mills to mail. Emerg Infect Dis 10: 996–1002.

23. DahlgrenCM, BuchananLM, DeckerHM, FreedSW, PhillipsCR, et al. (1960) Bacillus anthracis aerosols in goat hair processing mills. Am J Hyg 72: 24–31.

24. BrachmanPS, KaufmanAF, DalldorfFG (1966) Industrial inhalation Anthrax. Bacteriol Rev 30: 646–659.

25. HoltyJE, BravataDM, LiuH, OlshenRA, McDonaldKM, et al. (2006) Systematic review: a century of inhalational anthrax cases from 1900 to 2005. Ann Intern Med 144: 270–280.

26. GlassmanHN (1966) Discussion. Bacteriol Rev 30: 657–659.

27. DruettHA, HendersonDW, PackmanL, PeacockS (1953) Studies on respiratory infection. I. The influence of particle size on respiratory infection with anthrax spores. J Hyg (Lond) 51: 359–371.

28. HaasCN (1996) How to average microbial densities to characterize risk. Water Research 30: 1036–1038.

29. FranzDR, JahrlingPB, FriedlanderAM, McClainDJ, HooverDL, et al. (1997) Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278: 399–411.

30. United States Army Medical Research Institute of Infectious Diseases (2011) USAMRIID's Medical Management of Biological Casualties Handbook. Washington, DC: US Government Printing Office. 269 p.

31. RickmeierGL, McClellanGE, AnnoGA (2001) Biological warfare human response modeling. Military Operations Research 6: 35–57.

32. BrookmeyerR, JohnsonE, BarryS (2005) Modelling the incubation period of anthrax. Stat Med 24: 531–542.

33. Haas CN, Rose JB, Gerba CP (1999) Quantitative Microbial Risk Assessment. New York: John Wiley and Sons. 464 p.

34. HendersonDW, PeacockS, BeltonFC (1956) Observations on the prophylaxis of experimental pulmonary anthrax in the monkey. J Hyg (Lond) 54: 28–36.

35. MayerBT, KoopmanJS, IonidesEL, PujolJM, EisenbergJN (2011) A dynamic dose-response model to account for exposure patterns in risk assessment: a case study in inhalation anthrax. J R Soc Interface 8: 506–517.

36. AbramovaFA, GrinbergLM, YampolskayaOV, WalkerDH (1993) Pathology of inhalational anthrax in 42 cases from the Sverdlovsk outbreak of 1979. Proc Natl Acad Sci U S A 90: 2291–2294.

37. WilkeningDA (2008) Modeling the incubation period of inhalational anthrax. Med Decis Making 28: 593–605.

38. BrookmeyerR, BladesN, Hugh-JonesM, HendersonDA (2001) The statistical analysis of truncated data: application to the Sverdlovsk anthrax outbreak. Biostatistics 2: 233–247.

39. BrookmeyerR, JohnsonE, BollingerR (2003) Modeling the optimum duration of antibiotic prophylaxis in an anthrax outbreak. Proc Natl Acad Sci USA 100: 10129–10132.

40. Centers for Disease Control and Prevention (2001) Update: Investigation of bioterrorism-related anthrax, 2001. MMWR Morb Mortal Wkly Rep 50: 1008–1010.

41. FukaoT (2004) Immune system paralysis by anthrax lethal toxin: the roles of innate and adaptive immunity. Lancet Infect Dis 4: 166–170.

42. PujolJM, EisenbergJE, HaasCN, KoopmanJS (2009) The effect of ongoing exposure dynamics in dose response relationships. PLoS Comput Biol 5: e1000399.

43. TournierJN, Rossi PaccaniS, Quesnel-HellmannA, BaldariCT (2009) Anthrax toxins: a weapon to systematically dismantle the host immune defenses. Mol Aspects Med 30: 456–466.

44. JefferdsMD, LasersonK, FryAM, RoyS, HayslettJ, et al. (2002) Adherence to antimicrobial inhalational anthrax prophylaxis among postal workers, Washington, D.C., 2001. Emerg Infect Dis 8: 1138–1144.

45. SteelFisherG, BlendonR, RossLJ, CollinsBC, Ben-PorathEN, et al. (2011) Public response to an anthrax attack: reactions to mass prophylaxis in a scenario involving inhalation anthrax from an unidentified source. Biosecur Bioterror 9: 239–250.

46. DrusanoGL, OkusanyaOO, OkusanyaA, Van ScoyB, BrownDL, et al. (2008) Is 60 days of ciprofloxacin administration necessary for postexposure prophylaxis for Bacillus anthracis? Antimicrob Agents Chemother 52: 3973–3979.

47. GuttingBW, NicholsTL, ChannelSR, GearhartJM, AndrewsGA, et al. (2012) Inhalational anthrax (Ames aerosol) in naive and vaccinated New Zealand rabbits: characterizing the spread of bacteria from lung deposition to bacteremia. Front Cell Infect Microbiol 2: 87.

48. BarnewallRE, ComerJE, MillerBD, GuttingBW, WolfeDN, et al. (2012) Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model. Front Cell Infect Microbiol 2: 71.

49. TwenhafelNA (2010) Pathology of inhalational anthrax animal models. Vet Pathol 47: 819–830.

50. R Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria.

51. BlissCI (1934) The Method of Probits. Science 79: 38–39.

52. Finney DJ (1947) Probit Analysis. Cambridge, UK: Cambridge University Press. 272 p.

53. TamrakarSB, HaasCN (2008) Dose-response model for Burkholderia pseudomallei (melioidosis). J Appl Microbiol 105: 1361–1371.

54. FurumotoWA, MickeyR (1967) A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: experimental tests. Virology 32: 224–233.

55. TeunisPF, HavelaarAH (2000) The Beta Poisson dose-response model is not a single-hit model. Risk Anal 20: 513–520.

56. BrandeauML, McCoyJH, HupertN, HoltyJE, BravataDM (2009) Recommendations for modeling disaster responses in public health and medicine: a position paper of the society for medical decision making. Med Decis Making 29: 438–460.

57. HuangY, HaasCN (2011) Quantification of the relationship between bacterial kinetics and host response for monkeys exposed to aerosolized Francisella tularensis. Appl Environ Microbiol 77: 485–490.

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#