#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen


A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.


Vyšlo v časopise: The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen. PLoS Pathog 7(9): e32767. doi:10.1371/journal.ppat.1002235
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.ppat.1002235

Souhrn

A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.


Zdroje

1. SchulzBBanuettFDahlMSchlesingerRSchaferW 1990 The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60 295 306

2. LoHJKohlerJRDiDomenicoBLoebenbergDCacciapuotiA 1997 Nonfilamentous C. albicans mutants are avirulent. Cell 90 939 949

3. LinXHuangJCMitchellTGHeitmanJ 2006 Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATalpha allele enhances filamentation. PLoS Genet 2 e187

4. LiuH 2002 Co-regulation of pathogenesis with dimorphism and phenotypic switching in candida albicans, a commensal and a pathogen. Int J Med Microbiol 292 299 311

5. LinX 2009 Cryptococcus neoformans: Morphogenesis, infection, and evolution. Infect Genet Evol 9 401 416

6. NadalMGarcia-PedrajasMDGoldSE 2008 Dimorphism in fungal plant pathogens. FEMS Microbiol Lett 284 127 134

7. BraunBRJohnsonAD 2000 TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans. Genetics 155 57 67

8. ErnstJF 2000 Transcription factors in candida albicans - environmental control of morphogenesis. Microbiology 146 1763 1774

9. LiuH 2001 Transcriptional control of dimorphism in candida albicans. Curr Opin Microbiol 4 728 735

10. Sanchez-MartinezCPerez-MartinJ 2001 Dimorphism in fungal pathogens: Candida albicans and ustilago maydis--similar inputs, different outputs. Curr Opin Microbiol 4 214 221

11. BraunBRJohnsonAD 1997 Control of filament formation in candida albicans by the transcriptional repressor TUP1. Science 277 105 109

12. ToddRBGreenhalghJRHynesMJAndrianopoulosA 2003 TupA, the penicillium marneffei Tup1p homologue, represses both yeast and spore development. Mol Microbiol 48 85 94

13. PflugradAMeirJYBarnesTMMillerDM3rd 1997 The groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans. Development 124 1699 1709

14. FisherALCaudyM 1998 Groucho proteins: Transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12 1931 1940

15. LevanonDGoldsteinREBernsteinYTangHGoldenbergD 1998 Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci U S A 95 11590 11595

16. GrbavecDLoRLiuYGreenfieldAStifaniS 1999 Groucho/transducin-like enhancer of split (TLE) family members interact with the yeast transcriptional co-repressor SSN6 and mammalian SSN6-related proteins: Implications for evolutionary conservation of transcription repression mechanisms. Biochem J 337 13 17

17. WilliamsFEVaranasiUTrumblyRJ 1991 The CYC8 and TUP1 proteins involved in glucose repression in saccharomyces cerevisiae are associated in a protein complex. Mol Cell Biol 11 3307 3316

18. KeleherCAReddMJSchultzJCarlsonMJohnsonAD 1992 Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68 709 719

19. TzamariasDStruhlK 1995 Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev 9 821 831

20. VaranasiUSKlisMMikesellPBTrumblyRJ 1996 The Cyc8 (Ssn6)-Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits. Mol Cell Biol 16 6707 6714

21. KomachiKReddMJJohnsonAD 1994 The WD repeats of Tup1 interact with the homeo domain protein alpha 2. Genes Dev 8 2857 2867

22. KuchinSCarlsonM 1998 Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol Cell Biol 18 1163 1171

23. CooperJPRothSYSimpsonRT 1994 The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure. Genes Dev 8 1400 1410

24. EdmondsonDGSmithMMRothSY 1996 Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4. Genes Dev 10 1247 1259

25. WatsonADEdmondsonDGBoneJRMukaiYYuY 2000 Ssn6-Tup1 interacts with class I histone deacetylases required for repression. Genes Dev 14 2737 2744

26. DavieJKEdmondsonDGCocoCBDentSY 2003 Tup1-Ssn6 interacts with multiple class I histone deacetylases in vivo. J Biol Chem 278 50158 50162

27. LeeHChangYCKwon-ChungKJ 2005 TUP1 disruption reveals biological differences between MATa and MATalpha strains of cryptococcus neoformans. Mol Microbiol 55 1222 1232

28. LeeHChangYCVarmaAKwon-ChungKJ 2009 Regulatory diversity of TUP1 in cryptococcus neoformans. Eukaryot Cell 8 1901 1908

29. BraunBRKadoshDJohnsonAD 2001 NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J 20 4753 4761

30. MuradAMLengPStraffonMWishartJMacaskillS 2001 NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in candida albicans. EMBO J 20 4742 4752

31. KadoshDJohnsonAD 2005 Induction of the candida albicans filamentous growth program by relief of transcriptional repression: A genome-wide analysis. Mol Biol Cell 16 2903 2912

32. KhalafRAZitomerRS 2001 The DNA binding protein Rfg1 is a repressor of filamentation in candida albicans. Genetics 157 1503 1512

33. KadoshDJohnsonAD 2001 Rfg1, a protein related to the saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in candida albicans. Mol Cell Biol 21 2496 2505

34. LoubradouGBrachmannAFeldbruggeMKahmannR 2001 A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in ustilago maydis. Mol Microbiol 40 719 730

35. BrachmannAKonigJJuliusCFeldbruggeM 2004 A reverse genetic approach for generating gene replacement mutants in ustilago maydis. Mol Genet Genomics 272 216 226

36. KamperJ 2004 A PCR-based system for highly efficient generation of gene replacement mutants in ustilago maydis. Mol Genet Genomics 271 103 110

37. BolkerM 2001 Ustilago maydis--a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147 1395 1401

38. BrefortTDoehlemannGMendoza-MendozaAReissmannSDjameiA 2009 Ustilago maydis as a pathogen. Annu Rev Phytopathol 47 423 445

39. BanuettFHerskowitzI 1989 Different a alleles of ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci U S A 86 5878 5882

40. SpelligTBolkerMLottspeichFFrankRWKahmannR 1994 Pheromones trigger filamentous growth in ustilago maydis. EMBO J 13 1620 1627

41. BolkerMUrbanMKahmannR 1992 The a mating type locus of U. maydis specifies cell signaling components. Cell 68 441 450

42. GillissenBBergemannJSandmannCSchroeerBBolkerM 1992 A two-component regulatory system for self/non-self recognition in ustilago maydis. Cell 68 647 657

43. KamperJReichmannMRomeisTBolkerMKahmannR 1995 Multiallelic recognition: Nonself-dependent dimerization of the bE and bW homeodomain proteins in ustilago maydis. Cell 81 73 83

44. SnetselaarKMMimsCH 1992 Sporidial fusion and infection of maize seedlings by the smut fungus ustilago maydis.. Mycologia 84 193 203

45. SnetselaarKMMimsCH 1994 Light and electron microscopy of ustilago maydis hyphae in maize. Mycol Res 98 347 355

46. BanuettFHerskowitzI 1996 Discrete developmental stages during teliospore formation in the corn smut fungus, ustilago maydis. Development 122 2965 2976

47. KaffarnikFMullerPLeibundgutMKahmannRFeldbruggeM 2003 PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in ustilago maydis. EMBO J 22 5817 5826

48. GoldSDuncanGBarrettKKronstadJ 1994 cAMP regulates morphogenesis in the fungal pathogen ustilago maydis. Genes Dev 8 2805 2816

49. GoldSEBrogdonSMMayorgaMEKronstadJW 1997 The ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9 1585 1594

50. DurrenbergerFWongKKronstadJW 1998 Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in ustilago maydis. Proc Natl Acad Sci U S A 95 5684 5689

51. MullerPWeinzierlGBrachmannAFeldbruggeMKahmannR 2003 Mating and pathogenic development of the smut fungus ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2 1187 1199

52. HartmannHAKahmannRBolkerM 1996 The pheromone response factor coordinates filamentous growth and pathogenicity in ustilago maydis. EMBO J 15 1632 1641

53. HartmannHAKrugerJLottspeichFKahmannR 1999 Environmental signals controlling sexual development of the corn smut fungus ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11 1293 1306

54. StoldtVRSonnebornALeukerCEErnstJF 1997 Efg1p, an essential regulator of morphogenesis of the human pathogen candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16 1982 1991

55. LiuHKohlerJFinkGR 1994 Suppression of hyphal formation in candida albicans by mutation of a STE12 homolog. Science 266 1723 1726

56. CsankCSchroppelKLebererEHarcusDMohamedO 1998 Roles of the candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66 2713 2721

57. TzamariasDStruhlK 1994 Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature 369 758 761

58. ZhangZVaranasiUTrumblyRJ 2002 Functional dissection of the global repressor Tup1 in yeast: Dominant role of the C-terminal repression domain. Genetics 161 957 969

59. BolkerMGeninSLehmlerCKahmannR 1995 Genetic regulation of mating, and dimorphism in ustilago maydis. Can J Bot 73 320 325

60. Flor-ParraIVranesMKamperJPerez-MartinJ 2006 Biz1, a zinc finger protein required for plant invasion by ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18 2369 2387

61. BrefortTMullerPKahmannR 2005 The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in ustilago maydis. Eukaryot Cell 4 379 391

62. BrachmannAWeinzierlGKamperJKahmannR 2001 Identification of genes in the bW/bE regulatory cascade in ustilago maydis. Mol Microbiol 42 1047 1063

63. HeimelKSchererMVranesMWahlRPothiratanaC 2010 The transcription factor Rbf1 is the master regulator for b-mating type controlled pathogenic development in ustilago maydis. PLoS Pathog 6 e1001035

64. ZarnackKEichhornHKahmannRFeldbruggeM 2008 Pheromone-regulated target genes respond differentially to MAPK phosphorylation of transcription factor Prf1. Mol Microbiol 69 1041 1053

65. ConesaAGotzSGarcia-GomezJMTerolJTalonM 2005 Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21 3674 3676

66. ApostolIHeinsteinPFLowPS 1989 Rapid stimulation of an oxidative burst during elicitation of cultured plant cells : Role in defense and signal transduction. Plant Physiol 90 109 116

67. WuGShorttBJLawrenceEBLevineEBFitzsimmonsKC 1995 Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7 1357 1368

68. MolinaLKahmannR 2007 An ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19 2293 2309

69. KunitomoHSugimotoAWilkinsonCRYamamotoM 1995 Schizosaccharomyces pombe pac2+ controls the onset of sexual development via a pathway independent of the cAMP cascade. Curr Genet 28 32 38

70. Mendoza-MendozaAEskovaAWeiseCCzajkowskiRKahmannR 2009 Hap2 regulates the pheromone response transcription factor prf1 in ustilago maydis. Mol Microbiol 72 683 698

71. GarridoEVossUMullerPCastillo-LluvaSKahmannR 2004 The induction of sexual development and virulence in the smut fungus ustilago maydis depends on Crk1, a novel MAPK protein. Genes Dev 18 3117 3130

72. WilliamsFETrumblyRJ 1990 Characterization of TUP1, a mediator of glucose repression in saccharomyces cerevisiae. Mol Cell Biol 10 6500 6511

73. HwangCSOhJHHuhWKYimHSKangSO 2003 Ssn6, an important factor of morphological conversion and virulence in candida albicans. Mol Microbiol 47 1029 1043

74. Garcia-SanchezSMavorALRussellCLArgimonSDennisonP 2005 Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, candida albicans. Mol Biol Cell 16 2913 2925

75. Fagerstrom-BillaiFDurand-DubiefMEkwallKWrightAP 2007 Individual subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes. Mol Cell Biol 27 1069 1082

76. GarciaIMathieuMNikolaevIFelenbokBScazzocchioC 2008 Roles of the aspergillus nidulans homologues of Tup1 and Ssn6 in chromatin structure and cell viability. FEMS Microbiol Lett 289 146 154

77. KanekoAUmeyamaTUtena-AbeYYamagoeSNiimiM 2006 Tcc1p, a novel protein containing the tetratricopeptide repeat motif, interacts with Tup1p to regulate morphological transition and virulence in candida albicans. Eukaryot Cell 5 1894 1905

78. SchererMHeimelKStarkeVKamperJ 2006 The Clp1 protein is required for clamp formation and pathogenic development of ustilago maydis. Plant Cell 18 2388 2401

79. BalasubramanianBLowryCVZitomerRS 1993 The Rox1 repressor of the saccharomyces cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Mol Cell Biol 13 6071 6078

80. MennellaTAKlinkenbergLGZitomerRS 2003 Recruitment of Tup1-Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein. Eukaryot Cell 2 1288 1303

81. KlinkenbergLGMennellaTALuetkenhausKZitomerRS 2005 Combinatorial repression of the hypoxic genes of saccharomyces cerevisiae by DNA binding proteins Rox1 and Mot3. Eukaryot Cell 4 649 660

82. ZhangMRosenblum-VosLSLowryCVBoakyeKAZitomerRS 1991 A yeast protein with homology to the beta-subunit of G proteins is involved in control of heme-regulated and catabolite-repressed genes. Gene 97 153 161

83. DeckertJPeriniRBalasubramanianBZitomerRS 1995 Multiple elements and auto-repression regulate Rox1, a repressor of hypoxic genes in saccharomyces cerevisiae. Genetics 139 1149 1158

84. ConlanRSGounalakiNHatzisPTzamariasD 1999 The Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator. J Biol Chem 274 205 210

85. BarralesRRJimenezJIbeasJI 2008 Identification of novel activation mechanisms for FLO11 regulation in saccharomyces cerevisiae. Genetics 178 145 156

86. FriesenHHepworthSRSegallJ 1997 An Ssn6-Tup1-dependent negative regulatory element controls sporulation-specific expression of DIT1 and DIT2 in saccharomyces cerevisiae. Mol Cell Biol 17 123 134

87. YamashiroCTEbboleDJLeeBUBrownREBourlandC 1996 Characterization of rco-1 of neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of saccharomyces cerevisiae. Mol Cell Biol 16 6218 6228

88. SambrookJFrischEFManiatisT 1989 Molecular cloning: A laboratory manual. Cold Spring Harbour, New York Cold Spring Harbour Laboratory Press

89. HollidayR 1974 Ustilago maydis. KingRC Handbook of Genetics New York, USA Plenum Press 575

90. GillissenBBergemannJSandmannCSchroeerBBolkerM 1992 A two-component regulatory system for self/non-self recognition in ustilago maydis. Cell 68 647 657

91. SchulzBBanuettFDahlMSchlesingerRSchaferW 1990 The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60 295 306

92. Wedlich-SoldnerRBolkerMKahmannRSteinbergG 2000 A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus ustilago maydis. EMBO J 19 1974 1986

93. DoehlemannGvan der LindeKAssmannDSchwammbachDHofA 2009 Pep1, a secreted effector protein of ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 5 e1000290

94. EichhornHLessingFWinterbergBSchirawskiJKamperJ 2006 A ferroxidation/permeation iron uptake system is required for virulence in ustilago maydis. Plant Cell 18 3332 3345

95. BenjaminiYHochbergY 1995 Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B 57 289 300

Štítky
Hygiena a epidemiológia Infekčné lekárstvo Laboratórium

Článok vyšiel v časopise

PLOS Pathogens


2011 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#