#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Elevated Mutation Rate during Meiosis in


Meiosis, the cellular division that gives rise to germ cells, contributes to evolution by reassortment of parental alleles. This process involves recombination initiated by Spo11-induced double-strand breaks early in meiosis. The result is that germ cells from a single meiosis are different from either parent. Here we show that the DNA repair associated with meiotic recombination is inherently mutagenic, providing an additional source of variation that can contribute to evolution. This elevated mutagenesis requires the Spo11 protein, and the rate of mutagenesis correlates positively with the frequency of meiotic double-strand breaks. Furthermore, the mutations that arise show an increased level of associated crossovers, consistent with having been introduced during recombination. We speculate that there is an evolutionary drive to position essential genes in meiotic recombination coldspots for slow evolution, and genes that can afford to evolve more rapidly are placed near meiotic recombination hotspots.


Vyšlo v časopise: Elevated Mutation Rate during Meiosis in. PLoS Genet 11(1): e32767. doi:10.1371/journal.pgen.1004910
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004910

Souhrn

Meiosis, the cellular division that gives rise to germ cells, contributes to evolution by reassortment of parental alleles. This process involves recombination initiated by Spo11-induced double-strand breaks early in meiosis. The result is that germ cells from a single meiosis are different from either parent. Here we show that the DNA repair associated with meiotic recombination is inherently mutagenic, providing an additional source of variation that can contribute to evolution. This elevated mutagenesis requires the Spo11 protein, and the rate of mutagenesis correlates positively with the frequency of meiotic double-strand breaks. Furthermore, the mutations that arise show an increased level of associated crossovers, consistent with having been introduced during recombination. We speculate that there is an evolutionary drive to position essential genes in meiotic recombination coldspots for slow evolution, and genes that can afford to evolve more rapidly are placed near meiotic recombination hotspots.


Zdroje

1. LangGI, MurrayAW (2008) Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178: 67–82.

2. LindahlT (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715.

3. MullerHJ (1964) The relation of recombination to mutational advance. Mutat Res 106: 2–9.

4. OttoSP (2009) The evolutionary enigma of sex. Am Nat 174 Suppl 1S1–S14.

5. PageSL, HawleyRS (2004) The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol 20: 525–558.

6. KeeneyS, GirouxCN, KlecknerN (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375–384.

7. BuhlerC, BordeV, LichtenM (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in Saccharomyces cerevisiae. PLoS Biol 5: e324.

8. AllersT, LichtenM (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106: 47–57.

9. HunterN, KlecknerN (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106: 59–70.

10. PetesTD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2: 360–369.

11. LichtenM, de MassyB (2011) The impressionistic landscape of meiotic recombination. Cell 147: 267–270.

12. HillersKJ (2004) Crossover interference. Curr Biol 14: R1036–1037.

13. HolbeckSL, StrathernJN (1997) A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 147: 1017–1024.

14. RattrayAJ, McGillCB, ShaferBK, StrathernJN (2001) Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158: 109–122.

15. StrathernJN, ShaferBK, McGillCB (1995) DNA synthesis errors associated with double-strand-break repair. Genetics 140: 965–972.

16. HicksWM, KimM, HaberJE (2010) Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329: 82–85.

17. DeemA, KeszthelyiA, BlackgroveT, VaylA, CoffeyB, et al. (2011) Break-induced replication is highly inaccurate. PLoS Biol 9: e1000594.

18. SainiN, ZhangY, NishidaY, ShengZ, ChoudhuryS, et al. (2013) Fragile DNA Motifs Trigger Mutagenesis at Distant Chromosomal Loci in Saccharomyces cerevisiae. PLoS Genet 9: e1003551.

19. BurchLH, YangY, SterlingJF, RobertsSA, ChaoFG, et al. (2011) Damage-induced localized hypermutability. Cell Cycle 10: 1073–1085.

20. YangY, SterlingJ, StoriciF, ResnickMA, GordeninDA (2008) Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4: e1000264.

21. MalkovaA, HaberJE (2012) Mutations arising during repair of chromosome breaks. Annu Rev Genet 46: 455–473.

22. RosenbergSM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2: 504–515.

23. HeidenreichE (2007) Adaptive mutation in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 42: 285–311.

24. LawrenceCW, MaherVM (2001) Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos Trans R Soc Lond B Biol Sci 356: 41–46.

25. RattrayAJ, ShaferBK, McGillCB, StrathernJN (2002) The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics 162: 1063–1077.

26. AcharyaN, JohnsonRE, PrakashS, PrakashL (2006) Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol 26: 9555–9563.

27. Arbel-Eden A, Joseph-Strauss D, Masika H, Printzental O, Rachi E, et al. (2013) Trans-lesion DNA polymerases may be involved in yeast meiosis. G3 (Bethesda).

28. MagniGE, Von BorstelRC (1962) Different rates of spontaneous mutation during mitosis and meiosis in yeast. Genetics 47: 1097–1108.

29. MagniGE (1963) The origin of spontaneous mutations during meiosis. Proc Natl Acad Sci U S A 50: 975–980.

30. MagniGE (1964) Origin and nature of spontaneous mutations in meiotic organisms. J Cell Physiol 64 SUPPL 1165–171.

31. WiameJM, BechetJ, MoussetM, De Deken-GrensonM (1962) [Demonstration of an arginine permease in Saccharomyces cerevisiae]. Arch Int Physiol Biochim 70: 766–767.

32. FriisJ, RomanH (1968) The effect of the mating-type alleles on intragenic recombination in yeast. Genetics 59: 33–36.

33. HeudeM, FabreF (1993) a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133: 489–498.

34. Valencia-BurtonM, OkiM, JohnsonJ, SeierTA, KamakakaR, et al. (2006) Different mating-type-regulated genes affect the DNA repair defects of Saccharomyces RAD51, RAD52 and RAD55 mutants. Genetics 174: 41–55.

35. ChenC, UmezuK, KolodnerRD (1998) Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2: 9–22.

36. LangGI, MurrayAW (2011) Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol Evol 3: 799–811.

37. BordeV, WuTC, LichtenM (1999) Use of a recombination reporter insert to define meiotic recombination domains on chromosome III of Saccharomyces cerevisiae. Mol Cell Biol 19: 4832–4842.

38. PanJ, SasakiM, KniewelR, MurakamiH, BlitzblauHG, et al. (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144: 719–731.

39. GoldfarbT, LichtenM (2010) Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis. PLoS Biol 8: e1000520.

40. KlapholzS, WaddellCS, EspositoRE (1985) The role of the SPO11 gene in meiotic recombination in yeast. Genetics 110: 187–216.

41. HollingsworthNM, ByersB (1989) HOP1: a yeast meiotic pairing gene. Genetics 121: 445–462.

42. FriedlanderG, Joseph-StraussD, CarmiM, ZenvirthD, SimchenG, et al. (2006) Modulation of the transcription regulatory program in yeast cells committed to sporulation. Genome Biol 7: R20.

43. GoldwayM, ShermanA, ZenvirthD, ArbelT, SimchenG (1993) A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double strand breaks. Genetics 133: 159–169.

44. GiaeverG, ChuAM, NiL, ConnellyC, RilesL, et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391.

45. PrinzS, AmonA, KleinF (1997) Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146: 781–795.

46. WhelanWL, GockeE, ManneyTR (1979) The CAN1 locus of Saccharomyces cerevisiae: fine-structure analysis and forward mutation rates. Genetics 91: 35–51.

47. NishantKT, ChenC, ShinoharaM, ShinoharaA, AlaniE (2010) Genetic analysis of baker's yeast Msh4-Msh5 reveals a threshold crossover level for meiotic viability. PLoS Genet 6: e1001083.

48. QiJ, WijeratneAJ, TomshoLP, HuY, SchusterSC, et al. (2009) Characterization of meiotic crossovers and gene conversion by whole-genome sequencing in Saccharomyces cerevisiae. BMC Genomics 10: 475.

49. BishopDK, ZicklerD (2004) Early decision; meiotic crossover interference prior to stable strand exchange and synapsis. Cell 117: 9–15.

50. ManceraE, BourgonR, BrozziA, HuberW, SteinmetzLM (2008) High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454: 479–485.

51. SchmidtKH, WuJ, KolodnerRD (2006) Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein. Mol Cell Biol 26: 5406–5420.

52. SmithCE, LlorenteB, SymingtonLS (2007) Template switching during break-induced replication. Nature 447: 102–105.

53. TsaiIJ, BurtA, KoufopanouV (2010) Conservation of recombination hotspots in yeast. Proc Natl Acad Sci U S A 107: 7847–7852.

54. PalC, HurstLD (2003) Evidence for co-evolution of gene order and recombination rate. Nat Genet 33: 392–395.

55. NoorMA (2008) Mutagenesis from meiotic recombination is not a primary driver of sequence divergence between Saccharomyces species. Mol Biol Evol 25: 2439–2444.

56. KulathinalRJ, BennettSM, FitzpatrickCL, NoorMA (2008) Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc Natl Acad Sci U S A 105: 10051–10056.

57. BaudatF, ImaiY, de MassyB (2013) Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 14: 794–806.

58. GoldsteinAL, McCuskerJH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.

59. WachA, BrachatA, PohlmannR, PhilippsenP (1994) New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.

60. ThomasonLC, CostantinoN, ShawDV, CourtDL (2007) Multicopy plasmid modification with phage lambda Red recombineering. Plasmid 58: 148–158.

61. RothsteinR (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194: 281–301.

62. PerkinsDD (1949) Biochemical mutants in the smut fungus Ustilago Maydis. Genetics 34: 607–626.

63. LuriaSE, DelbruckM (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.

64. SarkarS, MaWT, SandriGH (1992) On fluctuation analysis: a new, simple and efficient method for computing the expected number of mutants. Genetica 85: 173–179.

65. FosterPL (2006) Methods for determining spontaneous mutation rates. Methods Enzymol 409: 195–213.

66. Amberg DC, Burke DJ, Strathern JN (2005) Methods in yeast genetics. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

67. SunH, TrecoD, SchultesNP, SzostakJW (1989) Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338: 87–90.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2015 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#