#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus


Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.


Vyšlo v časopise: Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004078
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004078

Souhrn

Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.


Zdroje

1. ParniskeM (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6: 763–775.

2. Bever JD, Kang H-J, Kaonongbua W, Wang M (2008). Genomic organization and mechanisms of inheritance in arbuscular mycorrhizal fungi: contrasting the evidence and Implications of current theories. In: Verma A, editor. Mycorrhiza, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 135–148.

3. HalaryS, MalikS-B, LildharL, SlamovitsCH, HijriM, et al. (2011) Conserved meiotic machinery in Glomus spp., a putatively ancient asexual fungal lineage. Genome Biol Evol 3: 950–958.

4. RileyR, CorradiN (2013) Searching for clues of sexual reproduction in the genomes of arbuscular mycorrhizal fungi. Fungal Ecol 6: 44–49.

5. MarleauJ, DalpéY, St-ArnaudM, HijriM (2011) Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol Biol 11: 51.

6. CrollD, GiovannettiM, KochAM, SbranaC, EhingerM, et al. (2008) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181: 924–937.

7. SbranaC, FortunaP, GiovannettiM (2011) Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi. Mycologia 103: 307–316.

8. KuhnG, HijriM, SandersIR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414: 745–748.

9. PawlowskaTE, TaylorJW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427: 733–737.

10. HijriM, SandersIR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433: 160–163.

11. SandersIR, CrollD (2010) Arbuscular Mycorrhiza: The challenge to understand the genetics of the fungal partner. Annu Rev Genet 44: 271–292.

12. StockingerH, WalkerC, SchüsslerA (2009) “Glomus intraradices DAOM197198,” a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183: 1176–1187.

13. RedeckerD, SchüsslerA, StockingerH, StürmerSL, MortonJB, et al. (2013) An evidence based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23: 515–531.

14. MartinF, Gianinazzi-PearsonV, HijriM, LammersP, RequenaN, et al. (2008) The long hard road to a completed Glomus intraradices genome. New Phytol 180: 747–750.

15. SędzielewskaKA, FuchsJ, TemschEM, BaronianK, WatzkeR, et al. (2011) Estimation of the Glomus intraradices nuclear DNA content. New Phytol 192: 794–797.

16. AngelardC, ColardA, Niculita-HirzelH, CrollD, SandersIR (2010) Segregation in a Mycorrhizal Fungus Alters Rice Growth and Symbiosis-Specific Gene Transcription. Curr Biol 20: 1216–1221.

17. BoonE, ZimmermanE, LangBF, HijriM (2010) Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome. J Evol Biol 23: 1519–1527.

18. SchochCL, SeifertKA, HuhndorfS, RobertV, SpougeJL, et al. (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109: 6241–6246.

19. EickbushTH, EickbushDG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477–485.

20. CampbellCS, WojciechowskiMF, BaldwinBG, AliceLA, DonoghueMJ (1997) Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol Biol Evol 14: 81–90.

21. GandolfiA, BonilauriP, RossiV, MenozziP (2001) Intraindividual and intraspecies variability of ITS1 sequences in the ancient asexual Darwinula stevensoni (Crustacea: Ostracoda). Heredity 87: 449–455.

22. NilssonRH, KristianssonE, RybergM, HallenbergN, LarssonKH (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform Online 4: 193–201.

23. TisserantE, KohlerA, Dozolme-SeddasP, BalestriniR, BenabdellahK, et al. (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193: 755–769.

24. JurkaJ, KapitonovVV, PavlicekA, KlonowskiP, KohanyO, et al. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: 462–467.

25. ArkhipovaIR (2005) Mobile genetic elements and sexual reproduction. Cytogenet Genome Res 110: 372–382.

26. DolginES, CharlesworthB (2006) The fate of transposable elements in asexual populations. Genetics 174: 817–827.

27. GollotteA, L'HaridonF, ChatagnierO, WettsteinG, ArnouldC, et al. (2006) Repetitive DNA sequences include retrotransposons in genomes of the Glomeromycota. Genetica 128: 455–469.

28. VandenkoornhuyseP, LeyvalC, BonninI (2001) High genetic diversity in arbuscular mycorrhizal fungi: evidence for recombination events. Heredity 87: 243–253.

29. CrollD, SandersIR (2009) Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evol Biol 9: 13.

30. den BakkerHC, VankurenNW, MortonJB, PawlowskaTE (2010) Clonality and recombination in the life history of an asexual arbuscular mycorrhizal fungus. Mol Biol Evol 27: 2474–2486.

31. JamesTY, KauffF, SchochCL, MathenyPB, HofstetterV, et al. (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443: 818–822.

32. CorradiN, SandersIR (2006) Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices. BMC Evol Biol 6: 21.

33. LeeJ, YoungJPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183: 200–211.

34. Capella-GutiérrezS, Marcet-HoubenM, GabaldónT (2012) Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol 10: 47.

35. RedeckerD, RaabP (2006) Phylogeny of the glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98: 885–895.

36. LiuYJ, HodsonMC, HallBD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6: 74.

37. KloppholzS, KuhnH, RequenaN (2011) A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr Biol 21: 1204–1209.

38. WinJ, KannegantiTD, Torto-AlaliboT, KamounS (2006) Computational and comparative analyses of 150 full-length cDNA sequences from the oomycete plant pathogen Phytophthora infestans. Fungal Genet Biol 43: 20–33.

39. HaasBJ, KamounS, ZodyMC, JiangRH, HandsakerRE, et al. (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461: 393–398.

40. SunG, YangZ, KoschT, SummersK, HuangJ (2011) Evidence for acquisition of virulence effectors in pathogenic chytrids. BMC Evol Biol 11: 195.

41. NavinN, KendallJ, TrogeJ, AndrewsP, RodgersL, et al. (2012) Tumour evolution inferred by single-cell sequencing. Nature 472: 90–94.

42. Chabaud M, Harrison M, de Carvalho-Niebel F, Bécard G, Barker DG (2006) Inoculation and growth of Mycorrhizal fungi. In: Mathesius U, Journet EP, Sumner LW, editors. The Medicago truncatula handbook. ISBN 0-9754303-1-9 http://www.noble.org/MedicagoHandbook

43. LuoR, LiuB, XieY, LiZ, HuangW, et al. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18.

44. EdgarRC, MyersEW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21: i152–i158.

45. XuZ, WangH (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35: W265–W268.

46. PriceAL, JonesNC, PevznerPA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21: I351–I358.

47. IqbalZ, CaccamoM, TurnerI, FlicekP, McVeanG (2012) De Novo Assembly and Genotyping of Variants Using Colored De Bruijn Graphs. Nature Genetics 44: 226–232.

48. IqbalZ, TurnerI, McVeanG (2013) High-throughput microbial population genomics using the Cortex variation assembler. Bioinformatics 29: 275–276.

49. HaasBJ, SalzbergSL, ZhuW, PerteaM, AllenJE, et al. (2008) Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 9: R7.

50. GotohO (2008) A space-efficient and accurate method for mapping and aligning cDNA sequences onto genomic sequence. Nucleic Acids Res 36: 2630–2638.

51. HaasBJ, DelcherAL, MountSM, WortmanJR, SmithRK, et al. (2003) Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic acids Res 31: 5654–5666.

52. BairochA, ApweilerR, WuCH, BarkerWC, BoeckmannB, et al. (2005) The Universal Protein Resource (UniProt). Nucleic. Acid. Res 33: D154–D159.

53. LiW, GodzikA (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659.

54. GotohO (2008) Direct mapping and alignment of protein sequences onto genomic sequence. Bioinformatics 24: 2438–2444.

55. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.

56. StankeM, DiekhansM, BaertschR, HausslerD (2008) Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24: 637–644.

57. ParraG, BlancoE, GuigoR (2000) GeneID in Drosophila. Genome Res 10: 511–515.

58. Ter-HovhannisyanV, LomsadzeA, ChernoffYO, BorodovskyM (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome 18: 1979–1990.

59. MajorosWH, PerteaM, SalzbergSL (2004) TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20: 2878–2879.

60. KorfI (2004) Gene finding in novel genomes. BMC Bioinformatics 5: 59.

61. ApweilerR, AttwoodTK, BairochA, BatemanA, BirneyE, et al. (2001) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29: 37–40.

62. QuevillonE, SilventoinenV, PillaiS, HarteN, MulderN, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–W120.

63. ConesaA, GötzS, García-GómezJM, TerolJ, TalónM, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.

64. ParraG, GradnamK, KorfI (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Proc Natl Acad Sci USA 23: 1061–1067.

65. LiL, StoeckertCJ, RoosDS (2003) OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res 13: 2178–2189.

66. MewesHW, AlbermannmK, BährM, FrishmanD (1997) Overview of the yeast genome. Nature 387: s7–s8.

67. GalaganJE, CalvoSE, BorkovichKA, SelkerEU, ReadND, et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422: 859–868.

68. DeanRA, TalbotNJ, EbboleDJ, FarmanML, Mitchell1TK, et al. (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980–986.

69. KämperJ, KahmannR, BölkerM, MaL-J, BrefortT, et al. (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444: 97–101.

70. KingN, WestbrookMJ, YoungSL, KuoA, AbedinM, et al. (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451: 783–788.

71. MartinF, AertsAD, AhrénD, BrunA, DanchinEGJ, et al. (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88–92.

72. MaL-J, IbrahimAS, SkoryC, GrabherrMG, BurgerG, et al. (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5: e1000549.

73. JonesonS, StajichJE, ShiuS-H, RosenblumEB (2011) Genomic transition to pathogenicity in chytrid fungi. PLoS Pathog 7: e1002338.

74. MartinF, KohlerA, MuratC, BalestriniR, CoutinhoPM, et al. (2011) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464: 1033–1038.

75. TaguaVCG, MedinaHR, Martín-DomínguezR, EslavaAP, CorrochanoLM, et al. (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanu. Fungal Genet Biol 49: 398–404.

76. EnrightAJ, Van DongenS, OuzounisCA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584.

77. JamesTY, PelinA, BonenL, AhrendtS, SainD, et al. (2013) Shared signatures of parasitism and phylogenomics unite cryptomycota and microsporidia. Curr Biol 23: 1548–1553.

78. KatohK, TohH (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286–298.

79. StamatakisA (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690.

80. DimmicMW, RestJS, MindellDP, GoldsteinRA (2002) rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55: 65–73.

81. StamatakisA, HooverP, RougemontJ (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771.

82. ShimodairaH, HasegawaM (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247.

83. Nielsen H, Krogh A (1998) Prediction of signal peptides and signal anchors by a hidden Markov model. In: Proceedings of the International Conference on Intelligent Systems for Molecular Biology 6: : 122–130.

84. TortoTA, LiS, StyerA, HuitemaE, TestaA, et al. (2003) EST Mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 30: 1575–1584.

85. EmanuelssonO, NielsenH, BrunakS (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005–1016.

86. WrzeszczynskiKO, RostB (2004) Annotating proteins from endoplasmic reticulum and Golgi apparatus in eukaryotic proteomes. Cell Mol Life Sci 61: 1341–1353.

87. HortonP, ParkKJ, ObayashiT, FujitaN, HaradaH, et al. (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35 (Web Server issue) W585–7.

88. SaundersDGO, WinJ, CanoLM, SzaboLJ, KamounS, et al. (2012) Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust Fungi. PLoS ONE 7: e29847.

89. CokolM (2000) Finding nuclear localization signals. EMBO Rep 1: 411–415.

90. SigristCJA, CeruttiL, HuloN, GattikerA, FalquetL, et al. (2002) PROSITE: A documented database using patterns and profiles as motif descriptors. Brief Bioinform 3: 265–274.

91. StergiopoulosI, de WitPJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47: 233–263.

92. JordaJ, KajavaAV (2009) T-REKS: identification of Tandem REpeats in sequences with a K-meanS based algorithm. Bioinformatics 25: 2632–2638.

93. AltschulS (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402.

94. MagraneM (2011) Uniprot Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database 2011: bar009.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#