#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Cell Cycle and Nutritional Checkpoint Controlling Bacterial Surface Adhesion


In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA) that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ). Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a ‘nutritional override’ system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.


Vyšlo v časopise: A Cell Cycle and Nutritional Checkpoint Controlling Bacterial Surface Adhesion. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004101
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004101

Souhrn

In natural environments, bacteria often adhere to surfaces where they form complex multicellular communities. Surface adherence is determined by the biochemical composition of the cell envelope. We describe a novel regulatory mechanism by which the bacterium, Caulobacter crescentus, integrates cell cycle and nutritional signals to control development of an adhesive envelope structure known as the holdfast. Specifically, we have discovered a 68-residue protein inhibitor of holdfast development (HfiA) that directly targets a conserved glycolipid glycosyltransferase required for holdfast production (HfsJ). Multiple cell cycle regulators associate with the hfiA and hfsJ promoters and control their expression, temporally constraining holdfast development to the late stages of G1. HfiA further functions as part of a ‘nutritional override’ system that decouples holdfast development from the cell cycle in response to nutritional cues. This control mechanism can limit surface adhesion in nutritionally sub-optimal environments without affecting cell cycle progression. We conclude that post-translational regulation of cell envelope enzymes by small proteins like HfiA may provide a general means to modulate the surface properties of bacterial cells.


Zdroje

1. CostertonJW, LewandowskiZ, CaldwellDE, KorberDR, Lappin-ScottHM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711–745.

2. GeeseyGG, RichardsonWT, YeomansHG, IrvinRT, CostertonJW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can J Microbiol 23: 1733–1736.

3. Kjelleberg S, Givskov M (2007) The Biofilm Mode of Life. In: Kjelleberg S, Givskov M, editors. The Biofilm Mode of Life: Mechanisms and Adaptations. New York: Taylor & Francis.

4. PetrovaOE, SauerK (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194: 2413–2425.

5. LiG, SmithCS, BrunYV, TangJX (2005) The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J Bacteriol 187: 257–265.

6. TsangPH, LiG, BrunYV, FreundLB, TangJX (2006) Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci U S A 103: 5764–5768.

7. OngCJ, WongML, SmitJ (1990) Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus. J Bacteriol 172: 1448–1456.

8. PoindexterJS (1964) Biological properties and classification of the Caulobacter group. Bacteriol Rev 28: 231–295.

9. MerkerRI, SmitJ (1988) Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl Environ Microbiol 54: 2078–2085.

10. BerneC, MaX, LicataNA, NevesBR, SetayeshgarS, et al. (2013) Physiochemical properties of Caulobacter crescentus holdfast: a localized bacterial adhesive. J Phys Chem B 117: 10492–10503.

11. HardyGG, AllenRC, TohE, LongM, BrownPJ, et al. (2010) A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76: 409–427.

12. TohE, KurtzHDJr, BrunYV (2008) Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol 190: 7219–7231.

13. SmithCS, HinzA, BodenmillerD, LarsonDE, BrunYV (2003) Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus. J Bacteriol 185: 1432–1442.

14. LoebGI, NeihofRA (1975) Marine conditioning films. Adv Chem 145: 319–335.

15. BodenmillerD, TohE, BrunYV (2004) Development of surface adhesion in Caulobacter crescentus. J Bacteriol 186: 1438–1447.

16. JanakiramanRS, BrunYV (1999) Cell cycle control of a holdfast attachment gene in Caulobacter crescentus. J Bacteriol 181: 1118–1125.

17. LeviA, JenalU (2006) Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development. J Bacteriol 188: 5315–5318.

18. ShapiroL, Agabian-KeshishianN, BendisI (1971) Bacterial differentiation. Science 173: 884–892.

19. LiG, BrownPJ, TangJX, XuJ, QuardokusEM, et al. (2012) Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83: 41–51.

20. ForemanR, FiebigA, CrossonS (2012) The LovK-LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus. J Bacteriol 194: 3038–3049.

21. PurcellEB, Siegal-GaskinsD, RawlingDC, FiebigA, CrossonS (2007) A photosensory two-component system regulates bacterial cell attachment. Proc Natl Acad Sci U S A 104: 18241–18246.

22. Alvarez-MartinezCE, LourencoRF, BaldiniRL, LaubMT, GomesSL (2007) The ECF sigma factor sigma(T) is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol Microbiol 66: 1240–1255.

23. MarksME, Castro-RojasCM, TeilingC, DuL, KapatralV, et al. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol 192: 3678–3688.

24. BingleWH, NomelliniJF, SmitJ (1997) Linker mutagenesis of the Caulobacter crescentus S-layer protein: toward a definition of an N-terminal anchoring region and a C-terminal secretion signal and the potential for heterologous protein secretion. J Bacteriol 179: 601–611.

25. WalkerSG, KarunaratneDN, RavenscroftN, SmitJ (1994) Characterization of mutants of Caulobacter crescentus defective in surface attachment of the paracrystalline surface layer. J Bacteriol 176: 6312–6323.

26. AwramP, SmitJ (2001) Identification of lipopolysaccharide O antigen synthesis genes required for attachment of the S-layer of Caulobacter crescentus. Microbiology 147: 1451–1460.

27. Marchler-BauerA, ZhengC, ChitsazF, DerbyshireMK, GeerLY, et al. (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41: D348–352.

28. Entcheva-DimitrovP, SpormannAM (2004) Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus. J Bacteriol 186: 8254–8266.

29. JavensJ, WanZ, HardyGG, BrunYV (2013) Bypassing the need for subcellular localization of a polysaccharide export-anchor complex by overexpressing its protein subunits. Mol Microbiol 89: 350–371.

30. KarimovaG, PidouxJ, UllmannA, LadantD (1998) A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95: 5752–5756.

31. FangG, PassalacquaKD, HockingJ, LlopisPM, GersteinM, et al. (2013) Transcriptomic and phylogenetic analysis of a bacterial cell cycle reveals strong associations between gene co-expression and evolution. BMC Genomics 14: 450.

32. LaubMT, McAdamsHH, FeldblyumT, FraserCM, ShapiroL (2000) Global analysis of the genetic network controlling a bacterial cell cycle. Science 290: 2144–2148.

33. McGrathPT, LeeH, ZhangL, IniestaAA, HottesAK, et al. (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25: 584–592.

34. CurtisPD, BrunYV (2010) Getting in the Loop: Regulation of Development in Caulobacter crescentus. Microbiology and Molecular Biology Reviews 74: 13–41.

35. KirkpatrickCL, ViollierPH (2012) Decoding Caulobacter development. Fems Microbiology Reviews 36: 193–205.

36. TsokosCG, LaubMT (2012) Polarity and cell fate asymmetry in Caulobacter crescentus. Current Opinion in Microbiology 15: 744–750.

37. QuonKC, MarczynskiGT, ShapiroL (1996) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84: 83–93.

38. HoltzendorffJ, HungD, BrendeP, ReisenauerA, ViollierPH, et al. (2004) Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304: 983–987.

39. MurraySM, PanisG, FumeauxC, ViollierPH, HowardM (2013) Computational and Genetic Reduction of a Cell Cycle to Its Simplest, Primordial Components. PLoS Biol 11: e1001749.

40. BiondiEG, SkerkerJM, ArifM, PrasolMS, PerchukBS, et al. (2006) A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus. Molecular Microbiology 59: 386–401.

41. FioravantiA, FumeauxC, MohapatraSS, BompardC, BrilliM, et al. (2013) DNA Binding of the Cell Cycle Transcriptional Regulator GcrA Depends on N6-Adenosine Methylation in Caulobacter crescentus and Other Alphaproteobacteria. PLoS Genet 9: e1003541.

42. JacobsC, DomianIJ, MaddockJR, ShapiroL (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111–120.

43. HottesAK, MeewanM, YangD, AranaN, RomeroP, et al. (2004) Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol 186: 1448–1461.

44. BarrK, WardS, Meier-DieterU, MayerH, RickPD (1988) Characterization of an Escherichia coli rff mutant defective in transfer of N-acetylmannosaminuronic acid (ManNAcA) from UDP-ManNAcA to a lipid-linked intermediate involved in enterobacterial common antigen synthesis. J Bacteriol 170: 228–233.

45. GinsbergC, ZhangYH, YuanY, WalkerS (2006) In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem Biol 1: 25–28.

46. D'EliaMA, HendersonJA, BeveridgeTJ, HeinrichsDE, BrownED (2009) The N-acetylmannosamine transferase catalyzes the first committed step of teichoic acid assembly in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 191: 4030–4034.

47. ChenJC, HottesAK, McAdamsHH, McGrathPT, ViollierPH, et al. (2006) Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J 25: 377–386.

48. BelleA, TanayA, BitinckaL, ShamirR, O'SheaEK (2006) Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A 103: 13004–13009.

49. JenalU, MaloneJ (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40: 385–407.

50. PaulR, WeiserS, AmiotNC, ChanC, SchirmerT, et al. (2004) Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18: 715–727.

51. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.

52. PitcherDG, SaundersNA, OwenRJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology 8: 151–156.

53. MerrittJH, KadouriDE, O'TooleGA (2005) Growing and analyzing static biofilms. Curr Protoc Microbiol Chapter 1 Unit 1B 1.

54. O'TooleGA, PrattLA, WatnickPI, NewmanDK, WeaverVB, et al. (1999) Genetic approaches to study of biofilms. Methods Enzymol 310: 91–109.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#