Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes


Reassortments and point mutations are two major contributors to diversity of Influenza A virus; however, the link between these two processes is unclear. It has been suggested that reassortments provoke a temporary increase in the rate of amino acid changes as the viral proteins adapt to new genetic environment, but this phenomenon has not been studied systematically. Here, we use a phylogenetic approach to infer the reassortment events between the 8 segments of influenza A H3N2 virus since its emergence in humans in 1968. We then study the amino acid replacements that occurred in genes encoded in each segment subsequent to reassortments. In five out of eight genes (NA, M1, HA, PB1 and NS1), the reassortment events led to a transient increase in the rate of amino acid replacements on the descendant phylogenetic branches. In NA and HA, the replacements following reassortments were enriched with parallel and/or reversing replacements; in contrast, the replacements at sites responsible for differences between antigenic clusters (in HA) and at sites under positive selection (in NA) were underrepresented among them. Post-reassortment adaptive walks contribute to adaptive evolution in Influenza A: in NA, an average reassortment event causes at least 2.1 amino acid replacements in a reassorted gene, with, on average, 0.43 amino acid replacements per evolving post-reassortment lineage; and at least ∼9% of all amino acid replacements are provoked by reassortments.


Vyšlo v časopise: Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes. PLoS Genet 10(1): e32767. doi:10.1371/journal.pgen.1004037
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1004037

Souhrn

Reassortments and point mutations are two major contributors to diversity of Influenza A virus; however, the link between these two processes is unclear. It has been suggested that reassortments provoke a temporary increase in the rate of amino acid changes as the viral proteins adapt to new genetic environment, but this phenomenon has not been studied systematically. Here, we use a phylogenetic approach to infer the reassortment events between the 8 segments of influenza A H3N2 virus since its emergence in humans in 1968. We then study the amino acid replacements that occurred in genes encoded in each segment subsequent to reassortments. In five out of eight genes (NA, M1, HA, PB1 and NS1), the reassortment events led to a transient increase in the rate of amino acid replacements on the descendant phylogenetic branches. In NA and HA, the replacements following reassortments were enriched with parallel and/or reversing replacements; in contrast, the replacements at sites responsible for differences between antigenic clusters (in HA) and at sites under positive selection (in NA) were underrepresented among them. Post-reassortment adaptive walks contribute to adaptive evolution in Influenza A: in NA, an average reassortment event causes at least 2.1 amino acid replacements in a reassorted gene, with, on average, 0.43 amino acid replacements per evolving post-reassortment lineage; and at least ∼9% of all amino acid replacements are provoked by reassortments.


Zdroje

1. KilbourneED (2006) Influenza pandemics of the 20th century. Emerging Infect Dis 12: 9–14 doi:10.3201/eid1201.051254

2. LiC, HattaM, WatanabeS, NeumannG, KawaokaY (2008) Compatibility among polymerase subunit proteins is a restricting factor in reassortment between equine H7N7 and human H3N2 influenza viruses. J Virol 82: 11880–11888 doi:10.1128/JVI.01445-08

3. LiC, HattaM, NidomCA, MuramotoY, WatanabeS, et al. (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. PNAS 107: 4687–4692 doi:10.1073/pnas.0912807107

4. SuzukiY (2010) A phylogenetic approach to detecting reassortments in viruses with segmented genomes. Gene 464: 11–16 doi:10.1016/j.gene.2010.05.002

5. NelsonMI, HolmesEC (2007) The evolution of epidemic influenza. Nature Reviews Genetics 8: 196–205 doi:10.1038/nrg2053

6. LindstromSE, HiromotoY, NeromeR, OmoeK, SugitaS, et al. (1998) Phylogenetic analysis of the entire genome of influenza A (H3N2) viruses from Japan: evidence for genetic reassortment of the six internal genes. J Virol 72: 8021–8031.

7. HolmesEC, GhedinE, MillerN, TaylorJ, BaoY, et al. (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3: e300 doi:10.1371/journal.pbio.0030300

8. NelsonMI, SimonsenL, ViboudC, MillerMA, TaylorJ, et al. (2006) Stochastic processes are key determinants of short-term evolution in influenza a virus. PLoS Pathog 2: e125 doi:10.1371/journal.ppat.0020125

9. NelsonMI, ViboudC, SimonsenL, BennettRT, GriesemerSB, et al. (2008) Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918. PLoS Pathog 4: e1000012 doi:10.1371/journal.ppat.1000012

10. RabadanR, LevineAJ, KrasnitzM (2008) Non-random reassortment in human influenza A viruses. Influenza Other Respi Viruses 2: 9–22 doi:10.1111/j.1750-2659.2007.00030.x

11. De SilvaUC, TanakaH, NakamuraS, GotoN, YasunagaT (2012) A comprehensive analysis of reassortment in influenza A virus. Biol Open 1: 385–390 doi:10.1242/bio.2012281

12. NagarajanN, KingsfordC (2011) GiRaF: robust, computational identification of influenza reassortments via graph mining. Nucleic Acids Res 39: e34 doi:10.1093/nar/gkq1232

13. YurovskyA, MoretBME (2011) FluReF, an automated flu virus reassortment finder based on phylogenetic trees. BMC Genomics 12: S3 doi:10.1186/1471-2164-12-S2-S3

14. SvintiV, CottonJA, McInerneyJO (2013) New approaches for unravelling reassortment pathways. BMC Evol Biol 13: 1 doi:10.1186/1471-2148-13-1

15. LubeckMD, PaleseP, SchulmanJL (1979) Nonrandom association of parental genes in influenza A virus recombinants. Virology 95: 269–274.

16. Downie JC (2004) Reassortment of influenza A virus genes linked to PB1 polymerase gene. In: Kawaoka Y, editor. Options for the Control of Influenza V. Amsterdam: Elsevier Science Bv, Vol. 1263. pp. 714–718.

17. VarichNL, GitelmanAK, ShilovAA, SmirnovYA, KaverinNV (2008) Deviation from the random distribution pattern of influenza A virus gene segments in reassortants produced under non-selective conditions. Arch Virol 153: 1149–1154 doi:10.1007/s00705-008-0070-5

18. ChenL-M, DavisCT, ZhouH, CoxNJ, DonisRO (2008) Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses. PLoS Pathog 4: e1000072 doi:10.1371/journal.ppat.1000072

19. GreenbaumBD, LiOTW, PoonLLM, LevineAJ, RabadanR (2012) Viral reassortment as an information exchange between viral segments. Proc Natl Acad Sci USA 109: 3341–3346 doi:10.1073/pnas.1113300109

20. SchrauwenEJA, BestebroerTM, RimmelzwaanGF, OsterhausADME, FouchierRAM, et al. (2013) Reassortment between Avian H5N1 and Human Influenza Viruses Is Mainly Restricted to the Matrix and Neuraminidase Gene Segments. PLoS ONE 8: e59889 doi:10.1371/journal.pone.0059889

21. KhiabanianH, TrifonovV, RabadanR (2009) Reassortment Patterns in Swine Influenza Viruses. PLoS ONE 4: e7366 doi:10.1371/journal.pone.0007366

22. RambautA, PybusOG, NelsonMI, ViboudC, TaubenbergerJK, et al. (2008) The genomic and epidemiological dynamics of human influenza A virus. Nature 453: 615–619 doi:10.1038/nature06945

23. RudnevaIA, TimofeevaTA, IlyushinaNA, VarichNL, Kochergin-NikitskyKS, et al. (2008) Post-reassortment amino acid change in the hemagglutinin of a human-avian influenza H5N1 reassortant virus alters its antigenic specificity. Acta Virol 52: 181–184.

24. VijaykrishnaD, SmithGJD, PybusOG, ZhuH, BhattS, et al. (2011) Long-term evolution and transmission dynamics of swine influenza A virus. Nature 473: 519–522 doi:10.1038/nature10004

25. GoldingGB (1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genetics Research 49: 71–82 doi:10.1017/S0016672300026768

26. BushRM, FitchWM, BenderCA, CoxNJ (1999) Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16: 1457–1465.

27. RochaEPC, SmithJM, HurstLD, HoldenMTG, CooperJE, et al. (2006) Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol 239: 226–235 doi:10.1016/j.jtbi.2005.08.037

28. PybusOG, RambautA, BelshawR, FreckletonRP, DrummondAJ, et al. (2007) Phylogenetic Evidence for Deleterious Mutation Load in RNA Viruses and Its Contribution to Viral Evolution. Mol Biol Evol 24: 845–852 doi:10.1093/molbev/msm001

29. KryazhimskiyS, BazykinGA, DushoffJ (2008) Natural selection for nucleotide usage at synonymous and nonsynonymous sites in influenza A virus genes. J Virol 82: 4938–4945 doi:10.1128/JVI.02415-07

30. KryazhimskiyS, PlotkinJB (2008) The Population Genetics of dN/dS. PLoS Genet 4: e1000304 doi:10.1371/journal.pgen.1000304

31. GillespieJH (1984) Molecular evolution over the mutational landscape. Evolution 38: 1116–1129.

32. KauffmanS, LevinS (1987) Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 128: 11–45 doi:10.1016/S0022-5193(87)80029-2

33. SmithDJ, LapedesAS, Jong JCde, BestebroerTM, RimmelzwaanGF, et al. (2004) Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science 305: 371–376 doi:10.1126/science.1097211

34. KryazhimskiyS, DushoffJ, BazykinGA, PlotkinJB (2011) Prevalence of epistasis in the evolution of influenza A surface proteins. PLoS Genet 7: e1001301 doi:10.1371/journal.pgen.1001301

35. WolfYI, ViboudC, HolmesEC, KooninEV, LipmanDJ (2006) Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biology Direct 1: 34 doi:10.1186/1745-6150-1-34

36. ShihAC-C, HsiaoT-C, HoM-S, LiW-H (2007) Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proc Natl Acad Sci USA 104: 6283–6288 doi:10.1073/pnas.0701396104

37. Gillespie JH (1991) The Causes of Molecular Evolution. Oxford University Press. 354 p.

38. StrelkowaN, LässigM (2012) Clonal interference in the evolution of influenza. Genetics 192: 671–682 doi:10.1534/genetics.112.143396

39. IllingworthCJR, MustonenV (2012) Components of Selection in the Evolution of the Influenza Virus: Linkage Effects Beat Inherent Selection. PLoS Pathog 8: e1003091 doi:10.1371/journal.ppat.1003091

40. FourmentM, WoodJT, GibbsAJ, GibbsMJ (2010) Evolutionary dynamics of the N1 neuraminidases of the main lineages of influenza A viruses. Mol Phylogenet Evol 56: 526–535 doi:10.1016/j.ympev.2010.04.039

41. FuruseY, SuzukiA, OshitaniH (2010) Reassortment between swine influenza A viruses increased their adaptation to humans in pandemic H1N1/09. Infect Genet Evol 10: 569–574 doi:10.1016/j.meegid.2010.01.010

42. RabadanR, LevineAJ, RobinsH (2006) Comparison of Avian and Human Influenza A Viruses Reveals a Mutational Bias on the Viral Genomes. J Virol 80: 11887–11891 doi:10.1128/JVI.01414-06

43. Dos ReisM, HayAJ, GoldsteinRA (2009) Using non-homogeneous models of nucleotide substitution to identify host shift events: application to the origin of the 1918 “Spanish” influenza pandemic virus. J Mol Evol 69: 333–345 doi:10.1007/s00239-009-9282-x

44. WongEH, SmithDK, RabadanR, PeirisM, PoonLL (2010) Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evolutionary Biology 10: 253 doi:10.1186/1471-2148-10-253

45. SandbulteMR, WestgeestKB, GaoJ, XuX, KlimovAI, et al. (2011) Discordant antigenic drift of neuraminidase and hemagglutinin in H1N1 and H3N2 influenza viruses. Proc Natl Acad Sci USA 108: 20748–20753 doi:10.1073/pnas.1113801108

46. HensleySE, DasSR, GibbsJS, BaileyAL, SchmidtLM, et al. (2011) Influenza A virus hemagglutinin antibody escape promotes neuraminidase antigenic variation and drug resistance. PLoS ONE 6: e15190 doi:10.1371/journal.pone.0015190

47. MyersJL, WetzelKS, LindermanSL, LiY, SullivanCB, et al. (2013) Compensatory hemagglutinin mutations alter antigenic properties of influenza viruses. J Virol 87: 11168–11172 doi:10.1128/JVI.01414-13

48. YurovskyA, MoretBME (2011) FluReF, an automated flu virus reassortment finder based on phylogenetic trees. BMC Genomics 12: S3 doi:10.1186/1471-2164-12-S2-S3

49. WolfYI, ViboudC, HolmesEC, KooninEV, LipmanDJ (2006) Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1: 34 doi:10.1186/1745-6150-1-34

50. KryazhimskiyS, BazykinGA, PlotkinJ, DushoffJ (2008) Directionality in the evolution of influenza A haemagglutinin. Proc R Soc B-Biol Sci 275: 2455–2464 doi:10.1098/rspb.2008.0521

51. RimmelzwaanGF, BerkhoffEGM, NieuwkoopNJ, FouchierRAM, OsterhausADME (2004) Functional compensation of a detrimental amino acid substitution in a cytotoxic-T-lymphocyte epitope of influenza a viruses by comutations. J Virol 78: 8946–8949 doi:10.1128/JVI.78.16.8946-8949.2004

52. RimmelzwaanGF, BerkhoffEGM, NieuwkoopNJ, SmithDJ, FouchierRAM, et al. (2005) Full restoration of viral fitness by multiple compensatory co-mutations in the nucleoprotein of influenza A virus cytotoxic T-lymphocyte escape mutants. J Gen Virol 86: 1801–1805 doi:10.1099/vir.0.80867-0

53. KoelleK, CobeyS, GrenfellB, PascualM (2006) Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. Science 314: 1898–1903 doi:10.1126/science.1132745

54. ShapiroB, RambautA, PybusOG, HolmesEC (2006) A phylogenetic method for detecting positive epistasis in gene sequences and its application to RNA virus evolution. Mol Biol Evol 23: 1724–1730 doi:10.1093/molbev/msl037

55. MitnaulLJ, MatrosovichMN, CastrucciMR, TuzikovAB, BovinNV, et al. (2000) Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus. J Virol 74: 6015–6020.

56. FergusonNM, FraserC, DonnellyCA, GhaniAC, AndersonRM (2004) Public Health Risk from the Avian H5N1 Influenza Epidemic. Science 304: 968–969 doi:10.1126/science.1096898

57. YongE (2012) Influenza: Five questions on H5N1. Nature 486: 456–458 doi:10.1038/486456a

58. ButlerD (2012) Death-rate row blurs mutant flu debate. Nature 482: 289 doi:10.1038/482289a

59. HerfstS, SchrauwenEJA, LinsterM, ChutinimitkulS, WitEde, et al. (2012) Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. Science 336: 1534–1541 doi:10.1126/science.1213362

60. ImaiM, WatanabeT, HattaM, DasSC, OzawaM, et al. (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486: 420–428 doi:10.1038/nature10831

61. RussellCA, FonvilleJM, BrownAEX, BurkeDF, SmithDL, et al. (2012) The Potential for Respiratory Droplet–Transmissible A/H5N1 Influenza Virus to Evolve in a Mammalian Host. Science 336: 1541–1547 doi:10.1126/science.1222526

62. BaoY, BolotovP, DernovoyD, KiryutinB, ZaslavskyL, et al. (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82: 596–601 doi:10.1128/JVI.02005-07

63. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 doi:10.1093/nar/gkh340

64. EdgarRC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113 doi:10.1186/1471-2105-5-113

65. LiW, GodzikA (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658–1659 doi:10.1093/bioinformatics/btl158

66. HuelsenbeckJP, RonquistF (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

67. RonquistF, HuelsenbeckJP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

68. AltekarG, DwarkadasS, HuelsenbeckJP, RonquistF (2004) Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20: 407–415 doi:10.1093/bioinformatics/btg427

69. OlsenCW, KarasinAI, CarmanS, LiY, BastienN, et al. (2006) Triple reassortant H3N2 influenza A viruses, Canada, 2005. Emerging Infect Dis 12: 1132–1135 doi:10.3201/eid1207.060268

70. PondSLK, FrostSDW, MuseSV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676–679 doi:10.1093/bioinformatics/bti079

71. PondSLK (2004) A Genetic Algorithm Approach to Detecting Lineage-Specific Variation in Selection Pressure. Molecular Biology and Evolution 22: 478–485 doi:10.1093/molbev/msi031

72. GuindonS, DelsucF, DufayardJ-F, GascuelO (2009) Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 537: 113–137 doi:_10.1007/978-1-59745-251-9_6

73. GrenfellBT, PybusOG, GogJR, WoodJLN, DalyJM, et al. (2004) Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science 303: 327–332 doi:10.1126/science.1090727

74. MurrellB, WertheimJO, MoolaS, WeighillT, SchefflerK, et al. (2012) Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genetics 8: e1002764 doi:10.1371/journal.pgen.1002764

75. VosRA, CaravasJ, HartmannK, JensenMA, MillerC (2011) BIO::Phylo-phyloinformatic analysis using perl. BMC Bioinformatics 12: 63 doi:10.1186/1471-2105-12-63

76. R Development Core Team (2008) R: a language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. Available: http://www.r-project.org./. Accessed 29 May 2013.

77. ScornavaccaC, ZickmannF, HusonDH (2011) Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics 27: i248–i256 doi:10.1093/bioinformatics/btr210

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2014 Číslo 1
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Eozinofilní granulomatóza s polyangiitidou
nový kurz
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa