#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Loss of a Conserved tRNA Anticodon Modification Perturbs Cellular Signaling


Transfer RNA (tRNA) modifications enhance the efficiency, specificity and fidelity of translation in all organisms. The anticodon modification mcm5s2U34 is required for normal growth and stress resistance in yeast; mutants lacking this modification have numerous phenotypes. Mutations in the homologous human genes are linked to neurological disease. The yeast phenotypes can be ameliorated by overexpression of specific tRNAs, suggesting that the modifications are necessary for efficient translation of specific codons. We determined the in vivo ribosome distributions at single codon resolution in yeast strains lacking mcm5s2U. We found accumulations at AAA, CAA, and GAA codons, suggesting that translation is slow when these codons are in the ribosomal A site, but these changes appeared too small to affect protein output. Instead, we observed activation of the GCN4-mediated stress response by a non-canonical pathway. Thus, loss of mcm5s2U causes global effects on gene expression due to perturbation of cellular signaling.


Vyšlo v časopise: Loss of a Conserved tRNA Anticodon Modification Perturbs Cellular Signaling. PLoS Genet 9(8): e32767. doi:10.1371/journal.pgen.1003675
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003675

Souhrn

Transfer RNA (tRNA) modifications enhance the efficiency, specificity and fidelity of translation in all organisms. The anticodon modification mcm5s2U34 is required for normal growth and stress resistance in yeast; mutants lacking this modification have numerous phenotypes. Mutations in the homologous human genes are linked to neurological disease. The yeast phenotypes can be ameliorated by overexpression of specific tRNAs, suggesting that the modifications are necessary for efficient translation of specific codons. We determined the in vivo ribosome distributions at single codon resolution in yeast strains lacking mcm5s2U. We found accumulations at AAA, CAA, and GAA codons, suggesting that translation is slow when these codons are in the ribosomal A site, but these changes appeared too small to affect protein output. Instead, we observed activation of the GCN4-mediated stress response by a non-canonical pathway. Thus, loss of mcm5s2U causes global effects on gene expression due to perturbation of cellular signaling.


Zdroje

1. AgrisPF, VendeixFAP, GrahamWD (2007) tRNA's wobble decoding of the genome: 40 years of modification. Journal of Molecular Biology 366: 1–13 doi:10.1016/j.jmb.2006.11.046

2. PhizickyEM, HopperAK (2010) tRNA biology charges to the front. Genes & Development 24: 1832–1860 doi:10.1101/gad.1956510

3. JohanssonM, ByströmA (2005) Transfer RNA modifications and modifying enzymes in Saccharomyces cerevisiae. Fine-tuning of RNA functions by modification and editing 12: 87–120 doi:10.1007/b105814

4. HuangB, JohanssonMJO, ByströmAS (2005) An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11: 424–436 doi:10.1261/rna.7247705

5. LeidelS, PedrioliPGA, BucherT, BrostR, CostanzoM, et al. (2009) Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458: 228–232 doi:10.1038/nature07643

6. MehlgartenC, JablonowskiD, WrackmeyerU, TschitschmannS, SondermannD, et al. (2010) Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 76: 1082–1094 doi:10.1111/j.1365-2958.2010.07163.x

7. ChenC, TuckS, ByströmAS (2009) Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet 5: e1000561 doi:10.1371/journal.pgen.1000561

8. ChanJC, YangJA, DunnMJ, AgrisPF, WongTW (1982) The nucleotide sequence of a glutamine tRNA from rat liver. Nucleic Acids Research 10: 3755–3758.

9. BjörkGR, HuangB, PerssonOP, ByströmAS (2007) A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13: 1245–1255 doi:10.1261/rna.558707

10. KroganNJ, GreenblattJF (2001) Characterization of a Six-Subunit Holo-Elongator Complex Required for the Regulated Expression of a Group of Genes in Saccharomyces cerevisiae. Mol Cell Biol 21: 8203–8212 doi:10.1128/MCB.21.23.8203-8212.2001

11. EsbergA, HuangB, JohanssonMJO, ByströmAS (2006) Elevated Levels of Two tRNA Species Bypass the Requirement for Elongator Complex in Transcription and Exocytosis. Molecular Cell 24: 139–148 doi:10.1016/j.molcel.2006.07.031

12. SlaugenhauptSA, BlumenfeldA, GillSP, LeyneM, MullJ, et al. (2001) Tissue-Specific Expression of a Splicing Mutation in the IKBKAP Gene Causes Familial Dysautonomia. The American Journal of Human Genetics 68: 598–605 doi:10.1086/318810

13. StrugLJ, ClarkeT, ChiangT, ChienM, BaskurtZ, et al. (2009) Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to Elongator Protein Complex 4 (ELP4). European Journal of Human Genetics 17: 1171–1181 doi:10.1038/ejhg.2008.267

14. JohanssonMJO, EsbergA, HuangB, BjörkGR, ByströmAS (2008) Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 28: 3301–3312 doi:10.1128/MCB.01542-07

15. KrügerMK, PedersenS, HagervallTG, SørensenMA (1998) The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. Journal of Molecular Biology 284: 621–631 doi:10.1006/jmbi.1998.2196

16. SenGC, GhoshHP (1976) Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5′-end of the anticodon of yeast transfer RNA Lys2. Nucleic Acids Research 3: 523–535.

17. SenoT, AgrisPF, SöllD (1974) Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation. Biochim Biophys Acta 349: 328–338.

18. OteroG, FellowsJ, LiY, de BizemontT, DiracAM, et al. (1999) Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Molecular Cell 3: 109–118.

19. IngoliaNT, GhaemmaghamiS, NewmanJRS, WeissmanJS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324: 218–223.

20. StadlerM, FireA (2011) Wobble base-pairing slows in vivo translation elongation in metazoans. RNA 17: 2063–2073 doi:10.1261/rna.02890211

21. KappLD, LorschJR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73: 657–704 doi:10.1146/annurev.biochem.73.030403.080419

22. DoerfelLK, WohlgemuthI, KotheC, PeskeF, UrlaubH, et al. (2013) EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 339: 85–88 doi:10.1126/science.1229017

23. UdeS, LassakJ, StarostaAL, KraxenbergerT, WilsonDN, et al. (2013) Translation elongation factor EF-P alleviates ribosome stalling at polyproline stretches. Science 339: 82–85 doi:10.1126/science.1228985

24. WoolstenhulmeCJ, ParajuliS, HealeyDW, ValverdeDP, PetersenEN, et al. (2013) Nascent peptides that block protein synthesis in bacteria. Proceedings of the National Academy of Sciences 110: E878–E887 doi:10.1073/pnas.1219536110

25. JohanssonM, IeongK-W, TrobroS, StrazewskiP, ÅqvistJ, et al. (2011) pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Proceedings of the National Academy of Sciences 108: 79–84 doi:10.1073/pnas.1012612107

26. PavlovMY, WattsRE, TanZ, CornishVW, EhrenbergM, et al. (2009) Slow peptide bond formation by proline and other N-alkylamino acids in translation. Proceedings of the National Academy of Sciences 106: 50–54 doi:10.1073/pnas.0809211106

27. TullerT, CarmiA, VestsigianK, NavonS, DorfanY, et al. (2010) An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141: 344–354.

28. PedersenS (1984) Escherichia coli ribosomes translate in vivo with variable rate. EMBO J 3: 2895–2898.

29. PechmannS, FrydmanJ (2012) Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding. Nature Structural & Molecular Biology 20: 237–243 doi:10.1038/nsmb.2466

30. IngoliaNT, LareauLF, WeissmanJS (2011) Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147: 789–802 doi:10.1016/j.cell.2011.10.002

31. LiG-W, OhE, WeissmanJS (2012) The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature 484: 538–541 doi:10.1038/nature10965

32. LetzringDP, DeanKM, GrayhackEJ (2010) Control of translation efficiency in yeast by codon-anticodon interactions. RNA 16: 2516–2528 doi:10.1261/rna.2411710

33. LodishHF, JacobsenM (1972) Regulation of hemoglobin synthesis. Equal rates of translation and termination of - and -globin chains. J Biol Chem 247: 3622–3629.

34. WaldenWE, Godefroy-ColburnT, ThachRE (1981) The role of mRNA competition in regulating translation. I. Demonstration of competition in vivo. J Biol Chem 256: 11739–11746.

35. AravaY, WangY, StoreyJD, LiuCL, BrownPO, et al. (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100: 3889–3894 doi:10.1073/pnas.0635171100

36. BrarGA, YassourM, FriedmanN, RegevA, IngoliaNT, et al. (2012) High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling. Science 335: 552–557 doi:10.1126/science.1215110

37. RobinsonMD, McCarthyDJ, SmythGK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140 doi:10.1093/bioinformatics/btp616

38. NatarajanK, MeyerMR, JacksonBM, SladeD, RobertsC, et al. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21: 4347–4368.

39. HibbsMA, HessDC, MyersCL, HuttenhowerC, LiK, et al. (2007) Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 23: 2692–2699 doi:10.1093/bioinformatics/btm403

40. NutiuR, FriedmanRC, LuoS, KhrebtukovaI, SilvaD, et al. (2011) Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat Biotechnol 29: 659–664 doi:10.1038/nbt.1882

41. HinnebuschAG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59: 407–450 doi:10.1146/annurev.micro.59.031805.133833

42. RamirezM, WekRC, Vazquez de AldanaCR, JacksonBM, FreemanB, et al. (1992) Mutations activating the yeast eIF-2 alpha kinase GCN2: isolation of alleles altering the domain related to histidyl-tRNA synthetases. Mol Cell Biol 12: 5801–5815 doi:10.1128/MCB.12.12.5801

43. de AldanaCRV, WekRC, SegundoPS, TruesdellAG, HinnebuschAG (1994) Multicopy tRNA genes functionally suppress mutations in yeast eIF-2 alpha kinase GCN2: evidence for separate pathways coupling GCN4 expression to unchanged tRNA. Mol Cell Biol 14: 7920–7932 doi:10.1128/MCB.14.12.7920

44. QiuH, HuC, AndersonJ, BjorkGR, SarkarS, et al. (2000) Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 20: 2505–2516.

45. DaugeronMC, LenstraTL, FrizzarinM, Yacoubi ElB, LiuX, et al. (2011) Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Nucleic Acids Research 39: 6148–6160 doi:10.1093/nar/gkr178

46. FrugierM, RyckelynckM, GiegéR (2005) tRNA-balanced expression of a eukaryal aminoacyl-tRNA synthetase by an mRNA-mediated pathway. EMBO Rep 6: 860–865 doi:10.1038/sj.embor.7400481

47. KudlaG, MurrayAW, TollerveyD, PlotkinJB (2009) Coding-Sequence Determinants of Gene Expression in Escherichia coli. Science 324: 255–258 doi:10.1126/science.1170160

48. BjorkGR, HuangB, PerssonOP, BystromAS (2007) A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13: 1245–1255 doi:10.1261/rna.558707

49. ChenC, HuangB, EliassonM, RydénP, ByströmAS (2011) Elongator Complex Influences Telomeric Gene Silencing and DNA Damage Response by Its Role in Wobble Uridine tRNA Modification. PLoS Genet 7: e1002258 doi:10.1371/journal.pgen.1002258.t001

50. PatilA, ChanCTY, DyavaiahM, RooneyJP, DedonPC, et al. (2012) Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications. rnabiology 9: 990–1001 doi:10.4161/rna.20531

51. ZhangG, HubalewskaM, IgnatovaZ (2009) Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Structural & Molecular Biology 16: 274–280 doi:10.1038/nsmb.1554

52. ShoemakerCJ, GreenR (2012) Translation drives mRNA quality control. Nature Structural & Molecular Biology 19: 594–601 doi:10.1038/nsmb.2301

53. SchliekerCD, Van der VeenAG, DamonJR, SpoonerE, PloeghHL (2008) A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proceedings of the National Academy of Sciences 105: 18255–18260 doi:10.1073/pnas.0808756105

54. NomaA, SakaguchiY, SuzukiT (2009) Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Research 37: 1335–1352 doi:10.1093/nar/gkn1023

55. GrosshansH, HurtE, SimosG (2000) An aminoacylation-dependent nuclear tRNA export pathway in yeast. Genes & Development 14: 830–840.

56. LundE, DahlbergJE (1998) Proofreading and Aminoacylation of tRNAs Before Export from the Nucleus. Science 282: 2082–2085 doi:10.1126/science.282.5396.2082

57. LeeG, PapapetrouEP, KimH, ChambersSM, TomishimaMJ, et al. (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461: 402–406 doi:10.1038/nature08320

58. LongtineMS, McKenzieA, DemariniDJ, ShahNG, WachA, et al. (1998) AID-YEA293>3.0.CO;2-U.

59. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology 10: R25 doi:10.1186/gb-2009-10-3-r25

60. EisenMB, SpellmanPT, BrownPO, BotsteinD (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95: 14863–14868.

61. SaldanhaAJ (2004) Java Treeview–extensible visualization of microarray data. Bioinformatics 20: 3246–3248 doi:10.1093/bioinformatics/bth349

62. AmbergDC, BurkeDJ, StrathernJN (2006) Assay of β-Galactosidase in Yeast: Permeabilized Cell Assay. Cold Spring Harbor Protocols 2006: 4158 doi:10.1101/pdb.prot4158

63. CollartMA, OlivieroS (2001) Preparation of yeast RNA. Curr Protoc Mol Biol Chapter 13: Unit13.12 doi:10.1002/0471142727.mb1312s23

64. ToussaintM, ConconiA (2006) High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents. Nat Protoc 1: 1922–1928 doi:10.1038/nprot.2006.304

65. FrugierM, GiegéR (2003) Yeast Aspartyl-tRNA Synthetase Binds Specifically its Own mRNA. Journal of Molecular Biology 331: 375–383 doi:10.1016/S0022-2836(03)00767-8

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 8
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#