#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

The Genome of : Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster


The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.


Vyšlo v časopise: The Genome of : Evolution, Organization, and Expression of the Cyclosporin Biosynthetic Gene Cluster. PLoS Genet 9(6): e32767. doi:10.1371/journal.pgen.1003496
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003496

Souhrn

The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.


Zdroje

1. BorelJF (1997) Cyclosporin in immunology: Past, present and future. Biodrugs 8: 1–3.

2. WangP, HeitmanJ (2005) The cyclophilins. Genome Biology 6: 226.

3. HandschumacherRE, HardingMW, RiceJ, DruggeRJ (1984) Cyclophilin - A specific cytosolic binding-protein for Cyclosporin-A. Science 226: 544–547.

4. LiuJ, FarmerJD, LaneWS, FriedmanJ, WeissmanI, et al. (1991) Calcineurin is a common target of cyclophilin-Cyclosporine-A and FKBP-FK506 complexes. Cell 66: 807–815.

5. JorgensenKA, Koefoed-NielsenPB, KaramperisN (2003) Calcineurin phosphatase activity and immunosuppression. A review on the role of calcineurin phosphatase activity and the immunosuppressive effect of cyclosporin A and tacrolimus. Scandinavian Journal of Immunology 57: 93–98.

6. OkeefeSJ, TamuraJ, KincaidRL, TocciMJ, OneillEA (1992) FK-506-sensitive and CsA-sensitive activation of the Interleukin-2 promotor by calcineurin. Nature 357: 692–694.

7. CruzMC, Del PoetaM, WangP, WengerR, ZenkeG, et al. (2000) Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrobial Agents and Chemotherapy 44: 143–149.

8. NakagawaM, SakamotoN, EnomotoN, TanabeY, KanazawaN, et al. (2004) Specific inhibition of hepatitis C virus replication by cyclosporin A. Biochemical and Biophysical Research Communications 313: 42–47.

9. MarahielMA, StachelhausT, MootzHD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chemical Reviews 97: 2651–2673.

10. WeberG, SchorgendorferK, SchneiderscherzerE, LeitnerE (1994) The peptide synthetase catalyzing cyclosporine production in Tolypocladium-niveum is encoded by a giant 45.8-kilobase open reading frame. Current Genetics 26: 120–125.

11. Isaka M, Kittakoop P (2003) Secondary Metabolites of Clavicipitalean Fungi. In: White JF, Bacon CW, Hywel-Jones NL, Spatafora JW, editors. Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol, and Cultural Impacts. New York, NY: Marcel Dekker Inc. pp 355–397.

12. CaneDE, WalshCT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chemistry & Biology 6: R319–R325.

13. PalS, LegerRJS, WuLP (2007) Fungal peptide destruxin a plays a specific role in suppressing the innate immune response in Drosophila melanogaster. Journal of Biological Chemistry 282: 8969–8977.

14. BandaniAR, KhambayBPS, FaullJL, NewtonR, DeadmanM, et al. (2000) Production of efrapeptins by Tolypocladium species and evaluation of their insecticidal and antimicrobial properties. Mycological Research 104: 537–544.

15. TorresMS, SinghAP, VorsaN, WhiteJFJr (2008) An analysis of ergot alkaloids in the Clavicipitaceae (Hypocreales, Ascomycota) and ecological implications. Symbiosis 46: 11–19.

16. SungGH, PoinarGO, SpataforaJW (2008) The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Molecular Phylogenetics and Evolution 49: 495–502.

17. SpataforaJW, SungGH, SungJM, Hywel-JonesNL, WhiteJF (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Molecular Ecology 16: 1701–1711.

18. HodgeK, KrasnoffS, HumberRA (1996) Tolypocladium inflatum is the anamorph of Cordyceps subsessilis. Mycologia 88: 715–719.

19. GaoQA, JinK, YingSH, ZhangYJ, XiaoGH, et al. (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics 7: e1001264.

20. BidochkaMJ, St LegerRJ, StuartA, GowanlockK (1999) Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. Microbiology-UK 145: 955–963.

21. ZhengPeng, XiaYongliang, XiaoGuohua, Chenghui Xiong, HuXiao, et al. (2011) Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology 12: R116.

22. StimbergN, WalzM, SchorgendorferK, KuckU (1992) Electrophoretic karyotyping from Tolypocladium-inflatum and 6 related strains allows differentiation of morphologically similar species. Applied Microbiology and Biotechnology 37: 485–489.

23. HoltC, YandellM (2011) MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12: 491.

24. ParraG, BradnamK, KorfI (2007) CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23: 1061–1067.

25. StajichJE, DeietrichFS, RoySW (2007) Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biology 8: R223.

26. KempkenF, SchreinerC, SchorgendorferK, KuchU (1995) A unique repeated DNA sequence in the cyclosporin-producing strain of Tolypocladium inflatum (ATCC 34921). Experimental Mycology 19: 305–313.

27. KempkenF, KuckU (1996) restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: Structure, expression, and alternative RNA splicing. Molecular and Cellular Biology 16: 6563–6572.

28. KempkenF (2008) The Tolypocladium inflatum CPA element encodes a RecQ helicase-like gene. Journal of Basic Microbiology 48: 496–499.

29. WindhoferF, HauckK, CatchesideDEA, KuckU, KempkenF (2002) Ds-like Restless deletion derivatives occur in Tolypocladium inflatum and two foreign hosts, Neurospora crassa and Penicillium chrysogenum. Fungal Genetics and Biology 35: 171–182.

30. Van DongenS (2008) Graph clustering via a discrete uncoupling process. Siam Journal on Matrix Analysis and Applications 30: 121–141.

31. RobbertseB, YoderR, BoydA, ReevesJ, SpataforaJ (2011) Hal: an automated pipeline for phylogenetic analyses of genomic data. PLoS Curr 3: RRN1213.

32. KubicekCP, Herrera-EstrellaA, Seidl-SeibothV, MartinezDA, DruzhininaIS, et al. (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biology 12: R40.

33. Rodriguez-EzpeletaN, BrinkmannH, RoureB, LartillotN, LangBF, et al. (2007) Detecting and overcoming systematic errors in genome-scale phylogenies. Systematic Biology 56: 389–399.

34. XiaoG, YingS-H, ZhengP, WangZ-L, ZhangS, et al. (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports 2: 483.

35. Pava-RipollM, AngeliniC, FangWG, WangSB, PosadaFJ, et al. (2011) The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate. Microbiology-SGM 157: 47–55.

36. DreyfussM, HarriE, HofmannH, KobelH, PacheW, et al. (1976) Cyclosporin-A and C new metabolites from Trichoderma-polysporum (Link Ex Pers) rifai. European Journal of Applied Microbiology 3: 125–133.

37. KrasnoffSB, GuptaS (1992) Efrapeptin production by Tolypocladium fungi (Deuteromycotina, Hyphomycetes) - Intraspecific and interspecific Variation. Journal of Chemical Ecology 18: 1727–1741.

38. WeiserJ, MathaV (1988) Tolypin, a new insecticidal metabolite of fungi of the genus Tolypocladium. Journal of Invertebrate Pathology 51: 94–96.

39. ChuM, MierzwaR, TruumeesI, GentileF, PatelM, et al. (1993) 2 novel diketopiperazines isolated from the fungus Tolypocladium sp. Tetrahedron Letters 34: 7537–7540.

40. KellerNP, HohnTM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genetics and Biology 21: 17–29.

41. WaltonJD (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: An hypothesis. Fungal Genetics and Biology 30: 167–171.

42. GacekA, StraussJ (2012) The chromatin code of fungal secondary metabolite gene clusters. Applied Microbiology and Biotechnology 95: 1389–1404.

43. KhaldiN, SeifuddinFT, TurnerG, HaftD, NiermanWC, et al. (2010) SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal Genetics and Biology 47: 736–741.

44. MedemaMH, BlinK, CimermancicP, de JagerV, ZakrzewskiP, et al. (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research 39: W339–W346.

45. PanaccioneDG (2005) Origins and significance of ergot alkaloid diversity in fungi. FEMS Microbiology Letters 251: 9–17.

46. TudzynskiP, HoelterK, CorreiaT, ArntzC, GrammelN, et al. (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Molecular and General Genetics 261: 133–141.

47. HoffmeisterD, KellerNP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Natural Product Reports 24: 393–416.

48. VonwartburgA, TraberR (1986) Chemistry of the natural cyclosporine metabolites. Progress in Allergy 38: 28–45.

49. TraberR, DreyfussMM (1996) Occurrence of cyclosporins and cyclosporin-like peptolides in fungi. Journal of Industrial Microbiology & Biotechnology 17: 397–401.

50. NakajimaH, HamasakiT, TanakaK, KimuraY, UdagawaS, et al. (1989) Production of cyclosporin by fungi belonging to the genus Neocosmospora. Agric Biol Chem 53: 2291–2292.

51. SallamLAR, El-RefaiAMH, HamdyAHA, El-MinofiHA, Abdel-SalamIS (2003) Role of some fermentation parameters on cyclosporin A production by a new isolate of Aspergillus terreus. Journal of General and Applied Microbiology 49: 321–328.

52. SakamotoK, TsujiiE, MiyauchiM, NakanishiT, YamashitaM, et al. (1993) FR901459, a novel immunosuppressant isolated from Stachybotrys chartarum No. 19392. J Antibiotics 46: 1788–1798.

53. DreyfussMM (1986) Neue Erkenntnisse aus einem pharmakologischen Screening. Sydowia 39: 22–36.

54. BushleyKE, TurgeonBG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evolutionary Biology 10: 26.

55. HaeseA, SchubertM, HerrmannM, ZocherR (1993) Molecular characterization of the Enniatin synthetase gene encoding a multifunctional enzyme catalyzing N-methyldepsipeptide formation in Fusarium-scirpi. Molecular Microbiology 7: 905–914.

56. XuYQ, OrozcoR, WijeratneEMK, GunatilakaAAL, StockSP, et al. (2008) Biosynthesis of the cyclooligomer depsipeptide Beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chemistry & Biology 15: 898–907.

57. XuYQ, RozcoR, WijeratneEMK, Espinosa-ArtilesP, GunatilakaAAL, et al. (2009) Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genetics and Biology 46: 353–364.

58. FiolkaM (2008) Immunosuppressive effect of cyclosporin A on insect humoral immune response. Journal of Invertebrate Pathology 98: 287–292.

59. EndoM, TakesakoK, KatoI, YamaguchiH (1997) Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrobial Agents and Chemotherapy 41: 672–676.

60. CardenasME, CruzMC, Del PoetaM, ChungNJ, PerfectJR, et al. (1999) Antifungal activities of antineoplastic agents Saccharomyces cerevisiae as a model system to study drug action. Clinical Microbiology Reviews 12: 583–611.

61. BushleyKE, RipollDR, TurgeonBG (2008) Module evolution and substrate specificity of fungal nonribosomal peptide synthetases involved in siderophore biosynthesis. BMC Evolutionary Biology 8: 328.

62. PieperR, KleinkaufH, ZocherR (1992) Enniatin synthetases from different Fusaria exhibiting distinct amino-acid specificities. Journal of Antibiotics 45: 1273–1277.

63. SlightomJL, MetzgerBR, LuuHT, ElhammerAP (2009) Cloning and molecular characterization of the gene encoding the Aureobasidin A biosynthesis complex in Aureobasidium pullulans BP-1938. Gene 431: 67–79.

64. PondSLK, MurrellB, FourmentM, FrostSDW, DelportW, et al. (2011) A Random Effects Branch-Site Model for Detecting Episodic Diversifying Selection. Molecular Biology and Evolution 28: 3033–3043.

65. LeeMJ, LeeHN, HanK, KimES (2008) Spore inoculum optimization to maximize cyclosporin a production in Tolypocladium niveum. Journal of Microbiology and Biotechnology 18: 913–917.

66. SamelSA, MarahielMA, EssenLO (2008) How to tailor non-ribosomal peptide products - new clues about the structures and mechanisms of modifying enzymes. Molecular Biosystems 4: 387–393.

67. HoffmannK, SchneiderscherzerE, KleinkaufH, ZocherR (1994) Purification and characterization of eukaryotic alanine racemase acting as key enzyme in cyclosporine biosynthesis. Journal of Biological Chemistry 269: 12710–12714.

68. OffenzellerM, SanterG, TotschnigK, SuZ, MoserH, et al. (1996) Biosynthesis of the unusual amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine of cyclosporin A: Enzymatic analysis of the reaction sequence including identification of the methylation precursor in a polyketide pathway. Biochemistry 35: 8401–8412.

69. SanglierJJ, TraberR, BuckRH, HofmannH, KobelH (1990) Isolation of (4-R)-R-(E)-2-Butenyl-4-Methyl-L-Threonine, the characteristic structural element of cyclosporins, rrom a blocked mutant of Tolypocladium-inflatum. Journal of Antibiotics 43: 707–714.

70. ThériaultYves, LoganTimothy M, MeadowsRobert, YuLiping, OlejniczakEdward T, et al. (1993) Solution structure of the cyclosporin A/cyclophilin complex by NMR. Nature 361: 88–90.

71. PflüglGaston, KallenJörg, SchirmerTilman, JansoniusJohan N, MauroGM, et al. (1993) X-ray structure of a decameric cyclophilin-cyclosporin crystal complex. Nature 361: 91–93.

72. GalatA (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: An analysis of the cyclophilin family of proteins. Archives of Biochemistry and Biophysics 371: 149–162.

73. GalatA (2003) Peptidylprolyl cis/trans isomerases (immunophilins): Biological diversity targets - Functions. Current Topics in Medicinal Chemistry 3: 1315–1347.

74. GothelSF, MarahielMA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cellular and Molecular Life Sciences 55: 423–436.

75. ChenMM, JiangMG, ShangJJ, LanXW, YangF, et al. (2011) CYP1, a hypovirus-regulated cyclophilin, is required for virulence in the chestnut blight fungus. Molecular Plant Pathology 12: 239–246.

76. HermansPWM, AdrianPV, AlbertC, EstevaoS, HoogenboezemT, et al. (2006) The streptococcal lipoprotein rotamase A (SlrA) is a functional peptidyl-prolyl isomerase involved in pneumococcal colonization. Journal of Biological Chemistry 281: 968–976.

77. EmanuelssonO, NielsenH, BrunakS, von HeijneG (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology 300: 1005–1016.

78. ViaudM, Brunet-SimonA, BrygooY, PradierJM, LevisC (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Molecular Microbiology 50: 1451–1465.

79. ViaudMC, BalhaderePV, TalbotNJ (2002) A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14: 917–930.

80. WangP, CardenasME, CoxCM, PerfectJR, HeitmanJ (2001) Two cyclophilin A homologs with shared and distinct functions important for growth and virulence of Cryptococcus neoformans. Embo Reports 2: 511–518.

81. HornbogenT, ZocherR (1995) Cloning and sequencing of a cyclophilin gene from the cyclosporine producer Tolypocladium-niveum. Biochemistry and Molecular Biology International 36: 169–176.

82. WeberG, LeitnerE (1994) Disruption of the cyclosporine synthetase gene of Tolypocladium-niveum. Current Genetics 26: 461–467.

83. TropschugM, NicholsonDW, HartlFU, KohlerH, PfannerN, et al. (1988) Cyclosporin A-binding protein (Cyclophilin) of Neurospora crassa - One gene codes for both the cytosolic and mitochondrial Forms. Journal of Biological Chemistry 263: 14433–14440.

84. DumasC, RavallecM, MathaV, VeyA (1996) Comparative study of the cytological aspects of the mode of action of destruxins and other peptidic fungal metabolites on target epithelial cells. Journal of Invertebrate Pathology 67: 137–146.

85. HornbogenT, PieperR, HoffmannK, KleinkaufH, ZocherR (1992) 2 New cyclophilins from Fusarium sambucinum and Aspergillus-niger - Resistance of cyclophilin Cyclosporine A complexes against proteolysis. Biochemical and Biophysical Research Communications 187: 791–796.

86. VilcinskasA, KopacekP, JegorovA, VeyA, MathaV (1997) Detection of lipophorin as the major cyclosporin-binding protein in the hemolymph of the greater wax moth Galleria mellonella. Comparative Biochemistry and Physiology C-Pharmacology Toxicology & Endocrinology 117: 41–45.

87. LeeBN, KrokenS, ChouDYT, RobbertseB, YoderOC, et al. (2005) Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. Eukaryotic Cell 4: 545–555.

88. FuJ, WenzelSC, PerlovaO, WangJP, GrossF, et al. (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Research 36: e113.

89. SlotJC, RokasA (2011) Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Current Biology 21: 134–139.

90. KhaldiN, CollemareJ, LebrunMH, WolfeKH (2008) Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biology 9: R18.

91. GardinerDM, HowlettBJ (2005) Bioinformatic and expression analysis of the putative gliotoxin biosynthetic gene cluster of Aspergillus fumigatus. FEMS Microbiology Letters 248: 241–248.

92. AnayaN, RonceroMIG (1995) skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum. Molecular & General Genetics 249: 637–647.

93. LeaRuiqiang (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24: 713–714.

94. SchulzMH, ZerbinoDR, VingronM, BirneyE (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086–1092.

95. LoweTM, EddySR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955–964.

96. EdgarRC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

97. AbascalF, ZardoyaR, PosadaD (2005) ProtTest: Selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.

98. YangZH (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586–1591.

99. SandersonMJ (2003) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19: 301–302.

100. O'BrienKP, RemmM, SonnhammerELL (2005) Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Research 33: D476–D480.

101. BerglundAC, SjolundE, OstlundG, SonnhammerELL (2008) InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Research 36: D263–D266.

102. EmanuelssonO, BrunakS, von HeijneG, NielsenH (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2: 953–971.

103. SmallI, PeetersN, LegeaiF, LurinC (2004) Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4: 1581–1590.

104. KroghA, LarssonB, von HeijneG, SonnhammerELL (2001) Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology 305: 567–580.

105. RawlingsND, BarrettAJ, BatemanA (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Research 40: D343–D350.

106. NelsonDR (2002) Mining databases for cytochrome P450 genes. Methods in Enzymology: Cytochrome P450, Part C 357: 3–15.

107. KatohM, KumaMiyata (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30: 3059–3066.

108. StamatakisA, HooverP, RougemontJ (2008) A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 75: 758–771.

109. DarlingAE, MauB, PernaNT (2010) progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. Plos One 5: e11147.

110. St LegerRJ, NelsonJO, ScreenSE (1999) The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology-UK 145: 2691–2699.

111. St LegerRJ, BidochkaMJ, RobertsDW (1994) Isoforms of the cuticle degrading Pr1 protease and production of a metalloproteinase by Metarhizium anisopliae. Arch Biochem Biophysical Journal 313: 1–7.

112. St. LegerRJ, BidochkaMJ, RobertsDW (1994) Characterization of a novel carboxypeptidase produced by the entomopathogenic fungus Metarhizium anisopliae. Arch Biochem Biophys 314: 392–398.

113. CumbieJS, KimbrelJA, DiYM, SchaferDW, WilhelmLJ, et al. (2011) GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression Differences. PloS ONE 6: e25279.

114. DiYM, SchaferDW, CumbieJS, ChangJH (2011) The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq. Statistical Applications in Genetics and Molecular Biology 10 doi: 10.2202/1544-6115.1637

115. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5: 621–628.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2013 Číslo 6
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#