#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Tethering of the Conserved piggyBac Transposase Fusion Protein CSB-PGBD3 to Chromosomal AP-1 Proteins Regulates Expression of Nearby Genes in Humans


The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3) transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB) gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1–5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein–protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program.


Vyšlo v časopise: Tethering of the Conserved piggyBac Transposase Fusion Protein CSB-PGBD3 to Chromosomal AP-1 Proteins Regulates Expression of Nearby Genes in Humans. PLoS Genet 8(9): e32767. doi:10.1371/journal.pgen.1002972
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002972

Souhrn

The CSB-PGBD3 fusion protein arose more than 43 million years ago when a 2.5-kb piggyBac 3 (PGBD3) transposon inserted into intron 5 of the Cockayne syndrome Group B (CSB) gene in the common ancestor of all higher primates. As a result, full-length CSB is now coexpressed with an abundant CSB-PGBD3 fusion protein by alternative splicing of CSB exons 1–5 to the PGBD3 transposase. An internal deletion of the piggyBac transposase ORF also gave rise to 889 dispersed, 140-bp MER85 elements that were mobilized in trans by PGBD3 transposase. The CSB-PGBD3 fusion protein binds MER85s in vitro and induces a strong interferon-like innate antiviral immune response when expressed in CSB-null UVSS1KO cells. To explore the connection between DNA binding and gene expression changes induced by CSB-PGBD3, we investigated the genome-wide DNA binding profile of the fusion protein. CSB-PGBD3 binds to 363 MER85 elements in vivo, but these sites do not correlate with gene expression changes induced by the fusion protein. Instead, CSB-PGBD3 is enriched at AP-1, TEAD1, and CTCF motifs, presumably through protein–protein interactions with the cognate transcription factors; moreover, recruitment of CSB-PGBD3 to AP-1 and TEAD1 motifs correlates with nearby genes regulated by CSB-PGBD3 expression in UVSS1KO cells and downregulated by CSB rescue of mutant CS1AN cells. Consistent with these data, the N-terminal CSB domain of the CSB-PGBD3 fusion protein interacts with the AP-1 transcription factor c-Jun and with RNA polymerase II, and a chimeric CSB-LacI construct containing only the N-terminus of CSB upregulates many of the genes induced by CSB-PGBD3. We conclude that the CSB-PGBD3 fusion protein substantially reshapes the transcriptome in CS patient CS1AN and that continued expression of the CSB-PGBD3 fusion protein in the absence of functional CSB may affect the clinical presentation of CS patients by directly altering the transcriptional program.


Zdroje

1. LaugelV, DallozC, DurandM, SauvanaudF, KristensenU, et al. (2010) Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome. Hum Mutat 31: 113–126 doi:10.1002/humu.21154.

2. TantinD, KansalA, CareyM (1997) Recruitment of the putative transcription-repair coupling factor CSB/ERCC6 to RNA polymerase II elongation complexes. Mol Cell Biol 17: 6803–6814.

3. van den BoomV, CitterioE, HoogstratenD, ZotterA, EglyJ-M, et al. (2004) DNA damage stabilizes interaction of CSB with the transcription elongation machinery. J Cell Biol 166: 27–36 doi:10.1083/jcb.200401056.

4. van GoolAJ, CitterioE, RademakersS, van OsR, VermeulenW, et al. (1997) The Cockayne syndrome B protein, involved in transcription-coupled DNA repair, resides in an RNA polymerase II-containing complex. EMBO J 16: 5955–5965 doi:10.1093/emboj/16.19.5955.

5. LagerwerfS, VrouweMG, OvermeerRM, FousteriMI, MullendersLHF (2011) DNA damage response and transcription. DNA Repair (Amst) 10: 743–750 doi:10.1016/j.dnarep.2011.04.024.

6. AnindyaR, MariP-O, KristensenU, KoolH, Giglia-MariG, et al. (2010) A ubiquitin-binding domain in Cockayne syndrome B required for transcription-coupled nucleotide excision repair. Mol Cell 38: 637–648 doi:10.1016/j.molcel.2010.04.017.

7. GrayLT, WeinerAM (2010) Ubiquitin recognition by the Cockayne syndrome group B protein: binding will set you free. Mol Cell 38: 621–622 doi:10.1016/j.molcel.2010.05.025.

8. YuanX, FengW, ImhofA, GrummtI, ZhouY (2007) Activation of RNA polymerase I transcription by cockayne syndrome group B protein and histone methyltransferase G9a. Mol Cell 27: 585–595 doi:10.1016/j.molcel.2007.06.021.

9. NewmanJC, BaileyAD, WeinerAM (2006) Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. Proc Natl Acad Sci USA 103: 9613–9618 doi:10.1073/pnas.0510909103.

10. NewmanJC, BaileyAD, FanH-Y, PavelitzT, WeinerAM (2008) An abundant evolutionarily conserved CSB-PiggyBac fusion protein expressed in Cockayne syndrome. PLoS Genet 4: e1000031 doi:10.1371/journal.pgen.1000031.

11. BroshRM, BalajeeAS, SelzerRR, SunesenM, Proietti De SantisL, et al. (1999) The ATPase domain but not the acidic region of Cockayne syndrome group B gene product is essential for DNA repair. Mol Biol Cell 10: 3583–3594.

12. SunesenM, SelzerRR, BroshRM, BalajeeAS, StevnsnerT, et al. (2000) Molecular characterization of an acidic region deletion mutant of Cockayne syndrome group B protein. Nucleic Acids Research 28: 3151–3159.

13. LakeRJ, GeykoA, HemashettarG, ZhaoY, FanH-Y (2010) UV-induced association of the CSB remodeling protein with chromatin requires ATP-dependent relief of N-terminal autorepression. Mol Cell 37: 235–246 doi:10.1016/j.molcel.2009.10.027.

14. LebedevA, Scharffetter-KochanekK, IbenS (2008) Truncated Cockayne syndrome B protein represses elongation by RNA polymerase I. J Mol Biol 382: 266–274 doi:10.1016/j.jmb.2008.07.018.

15. HoribataK, SaijoM, BayMN, LanL, KuraokaI, et al. (2011) Mutant Cockayne syndrome group B protein inhibits repair of DNA topoisomerase I-DNA covalent complex. Genes Cells 16: 101–114 doi:10.1111/j.1365-2443.2010.01467.x.

16. BaileyAD, GrayLT, PavelitzT, NewmanJC, HoribataK, et al. (2012) The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells. DNA Repair (Amst) doi:10.1016/j.dnarep.2012.02.004.

17. DongW, LiY, GaoM, HuM, LiX, et al. (2011) IKK contributes to UVB-induced VEGF expression by regulating AP-1 transactivation. Nucleic Acids Research doi:10.1093/nar/gkr1216.

18. ShanZ-X, LinQ-X, YangM, ZhangBin, ZhuJ-N, et al. (2011) Transcription factor Ap-1 mediates proangiogenic MIF expression in human endothelial cells exposed to Angiotensin II. Cytokine 53: 35–41 doi:10.1016/j.cyto.2010.09.009.

19. ZenzR, EferlR, ScheineckerC, RedlichK, SmolenJ, et al. (2008) Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res Ther 10: 201 doi:10.1186/ar2338.

20. ZhangY, FengXH, DerynckR (1998) Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature 394: 909–913 doi:10.1038/29814.

21. JurkaJ, KapitonovVV, PavlicekA, KlonowskiP, KohanyO, et al. (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110: 462–467 doi:10.1159/000084979.

22. CaryLC, GoebelM, CorsaroBG, WangHG, RosenE, et al. (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172: 156–169.

23. LiX, LoboN, BauserCA, FraserMJ (2001) The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266: 190–198.

24. YusaK, ZhouL, LiMA, BradleyA, CraigNL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108: 1531–1536 doi:10.1073/pnas.1008322108.

25. WhitfieldCR, ShiltonBH, HanifordDB (2012) Identification of basepairs within Tn5 termini that are critical for H-NS binding to the transpososome and regulation of Tn5 transposition. Mob DNA 3: 7 doi:10.1186/1759-8753-3-7.

26. HoribataK, IwamotoY, KuraokaI, JaspersNGJ, KurimasaA, et al. (2004) Complete absence of Cockayne syndrome group B gene product gives rise to UV-sensitive syndrome but not Cockayne syndrome. Proc Natl Acad Sci USA 101: 15410–15415 doi:10.1073/pnas.0404587101.

27. BentleyDR, BalasubramanianS, SwerdlowHP, SmithGP, MiltonJ, et al. (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456: 53–59 doi:10.1038/nature07517.

28. LangmeadB, TrapnellC, PopM, SalzbergSL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25 doi:10.1186/gb-2009-10-3-r25.

29. ZhangY, LiuT, MeyerCA, EeckhouteJ, JohnsonDS, et al. (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9: R137 doi:10.1186/gb-2008-9-9-r137.

30. JohnsonDS, MortazaviA, MyersRM, WoldB (2007) Genome-Wide Mapping of in Vivo Protein-DNA Interactions. Science 316: 1497–1502 doi:10.1126/science.1141319.

31. ValouevA, JohnsonDS, SundquistA, MedinaC, AntonE, et al. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 5: 829–834 doi:10.1038/nmeth.1246.

32. PepkeS, WoldB, MortazaviA (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6: S22–S32 doi:10.1038/nmeth.1371.

33. ShinH, LiuT, ManraiAK, LiuXS (2009) CEAS: cis-regulatory element annotation system. Bioinformatics 25: 2605–2606 doi:10.1093/bioinformatics/btp479.

34. BaileyTL, ElkanC (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2: 28–36.

35. GuptaS, StamatoyannopoulosJA, BaileyTL, NobleWS (2007) Quantifying similarity between motifs. Genome Biol 8: R24 doi:10.1186/gb-2007-8-2-r24.

36. EferlR, WagnerEF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868 doi:10.1038/nrc1209.

37. PhillipsJE, CorcesVG (2009) CTCF: master weaver of the genome. Cell 137: 1194–1211 doi:10.1016/j.cell.2009.06.001.

38. WagnerEF, EferlR (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208: 126–140 doi:10.1111/j.0105-2896.2005.00332.x.

39. ChinenovY, KerppolaTK (2001) Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene 20: 2438–2452 doi:10.1038/sj.onc.1204385.

40. LallemandD, SpyrouG, YanivM, PfarrCM (1997) Variations in Jun and Fos protein expression and AP-1 activity in cycling, resting and stimulated fibroblasts. Oncogene 14: 819–830 doi:10.1038/sj.onc.1200901.

41. McLeanCY, BristorD, HillerM, ClarkeSL, SchaarBT, et al. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28: 495–501 doi:10.1038/nbt.1630.

42. StoreyJ (2002) A direct approach to false discovery rates - Storey - 2002 - Journal of the Royal Statistical Society: Series B (Statistical Methodology) - Wiley Online Library. Journal of the Royal Statistical Society Series B …

43. PaceJK, FeschotteC (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17: 422–432 doi:10.1101/gr.5826307.

44. MitraR, Fain-ThorntonJ, CraigNL (2008) piggyBac can bypass DNA synthesis during cut and paste transposition. EMBO J 27: 1097–1109 doi:10.1038/emboj.2008.41.

45. DreszerTR, KarolchikD, ZweigAS, HinrichsAS, RaneyBJ, et al. (2012) The UCSC Genome Browser database: extensions and updates 2011. Nucleic Acids Research 40: D918–D923 doi:10.1093/nar/gkr1055.

46. KarolchikD (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Research 32: 493D–496 doi:10.1093/nar/gkh103.

47. FanH-Y, TrotterKW, ArcherTK, KingstonRE (2005) Swapping function of two chromatin remodeling complexes. Mol Cell 17: 805–815 doi:10.1016/j.molcel.2005.02.024.

48. OuyangX, LiJ, LiG, LiB, ChenB, et al. (2011) Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development. Plant Cell 23: 2514–2535 doi:10.1105/tpc.111.085126.

49. LynchVJ, LeclercRD, MayG, WagnerGP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43: 1154–1159 doi:10.1038/ng.917.

50. SchmidtD, SchwaliePC, WilsonMD, BallesterB, GonçalvesA, et al. (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148: 335–348 doi:10.1016/j.cell.2011.11.058.

51. LakeRJ, BasheerA, FanH-Y (2011) Reciprocally regulated chromatin association of the Cockayne syndrome protein B and p53. J Biol Chem doi:10.1074/jbc.M111.252643.

52. DérijardB, HibiM, WuIH, BarrettT, SuB, et al. (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

53. RenoEM, HaughianJM, JacksonTA, ThorneAM, BradfordAP (2009) c-Jun N-terminal kinase regulates apoptosis in endometrial cancer cells. Apoptosis 14: 809–820 doi:10.1007/s10495-009-0354-6.

54. IpJY, SchmidtD, PanQ, RamaniAK, FraserAG, et al. (2011) Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 21: 390–401 doi:10.1101/gr.111070.110.

55. HromasR, WrayJ, LeeS-H, MartinezL, FarringtonJ, et al. (2008) The human set and transposase domain protein Metnase interacts with DNA Ligase IV and enhances the efficiency and accuracy of non-homologous end-joining. DNA Repair (Amst) 7: 1927–1937 doi:10.1016/j.dnarep.2008.08.002.

56. De HaroLP, WrayJ, WilliamsonEA, DurantST, CorwinL, et al. (2010) Metnase promotes restart and repair of stalled and collapsed replication forks. Nucleic Acids Research 38: 5681–5691 doi:10.1093/nar/gkq339.

57. LiuD, BischerourJ, SiddiqueA, BuisineN, BigotY, et al. (2007) The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Mol Cell Biol 27: 1125–1132 doi:10.1128/MCB.01899-06.

58. BeckBD, LeeSS, HromasR, LeeS-H (2010) Regulation of Metnase's TIR binding activity by its binding partner, Pso4. Arch Biochem Biophys 498: 89–94 doi:10.1016/j.abb.2010.04.011.

59. BeckBD, ParkS-J, LeeY-J, RomanY, HromasRA, et al. (2008) Human Pso4 is a metnase (SETMAR)-binding partner that regulates metnase function in DNA repair. J Biol Chem 283: 9023–9030 doi:10.1074/jbc.M800150200.

60. TroelstraC, van GoolA, de WitJ, VermeulenW, BootsmaD, et al. (1992) ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell 71: 939–953.

61. BaharB, O'DohertyJV, MaherS, McMorrowJ, SweeneyT (2012) Chitooligosaccharide elicits acute inflammatory cytokine response through AP-1 pathway in human intestinal epithelial-like (Caco-2) cells. Molecular Immunology 1–9 doi:10.1016/j.molimm.2012.03.027.

62. HippMS, UrbichC, MayerP, WischhusenJ, WellerM, et al. (2002) AID-IMMU2208>3.0.CO;2-2.

63. OrjaloAV, BhaumikD, GenglerBK, ScottGK, CampisiJ (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 106: 17031–17036 doi:10.1073/pnas.0905299106.

64. FranceschiC, BonafèM, ValensinS, OlivieriF, De LucaM, et al. (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908: 244–254.

65. WeidenheimKM, DicksonDW, RapinI (2009) Neuropathology of Cockayne syndrome: Evidence for impaired development, premature aging, and neurodegeneration. Mech Ageing Dev 130: 619–636 doi:10.1016/j.mad.2009.07.006.

66. BrooksPJ, ChengT-F, CooperL (2008) Do all of the neurologic diseases in patients with DNA repair gene mutations result from the accumulation of DNA damage? DNA Repair (Amst) 7: 834–848 doi:10.1016/j.dnarep.2008.01.017.

67. GallA, TreutingP, ElkonKB, LooY-M, GaleM, et al. (2012) Autoimmunity Initiates in Nonhematopoietic Cells and Progresses via Lymphocytes in an Interferon-Dependent Autoimmune Disease. Immunity 36: 120–131 doi:10.1016/j.immuni.2011.11.018.

68. Smit AFA, Hubley R, Green P (1996–2012) RepeatMasker Open-3.0. Available:http://www.repeatmasker.org.

69. KentWJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12: 656–664 doi:10.1101/gr.229202.

70. YuA, FanHY, LiaoD, BaileyAD, WeinerAM (2000) Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 5: 801–810.

71. GoecksJ, NekrutenkoA, TaylorJ (2010) Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11: R86 doi:10.1186/gb-2010-11-8-r86.

72. GiardineB, RiemerC, HardisonRC, BurhansR, ElnitskiL, et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15: 1451–1455 doi:10.1101/gr.4086505.

73. BlankenbergD, Kuster VonG, CoraorN, AnandaG, LazarusR, et al. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit19.10.1–Unit19.10.21 doi:10.1002/0471142727.mb1910s89.

74. BaileyTL, WilliamsN, MislehC, LiWW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research 34: W369–W373 doi:10.1093/nar/gkl198.

75. BradsherJ, AuriolJ, Proietti-De-SantisL, IbenS, VoneschJL, et al. (2002) CSB is a component of RNA pol I transcription. Mol Cell 10: 819–829.

76. AresM, ChungJS, GiglioL, WeinerAM (1987) Distinct factors with Sp1 and NF-A specificities bind to adjacent functional elements of the human U2 snRNA gene enhancer. Genes Dev 1: 808–817.

77. AbramoffMD, MagalhaesPJ, RamSJ (2004) Image Processing with ImageJ. Biophotonics International 11: 36–42.

78. MarinescuVD, KohaneIS, RivaA (2005) MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes. BMC Bioinformatics 6: 79 doi:10.1186/1471-2105-6-79.

79. MaglottD (2004) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Research 33: D54–D58 doi:10.1093/nar/gki031.

80. KanehisaM, GotoS, SatoY, FurumichiM, TanabeM (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research 40: D109–D114 doi:10.1093/nar/gkr988.

81. KanehisaM, GotoS (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28: 27–30.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#