#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Rif2 Promotes a Telomere Fold-Back Structure through Rpd3L Recruitment in Budding Yeast


Using a genome-wide screening approach, we have established the genetic requirements for proper telomere structure in Saccharomyces cerevisiae. We uncovered 112 genes, many of which have not previously been implicated in telomere function, that are required to form a fold-back structure at chromosome ends. Among other biological processes, lysine deacetylation, through the Rpd3L, Rpd3S, and Hda1 complexes, emerged as being a critical regulator of telomere structure. The telomeric-bound protein, Rif2, was also found to promote a telomere fold-back through the recruitment of Rpd3L to telomeres. In the absence of Rpd3 function, telomeres have an increased susceptibility to nucleolytic degradation, telomere loss, and the initiation of premature senescence, suggesting that an Rpd3-mediated structure may have protective functions. Together these data reveal that multiple genetic pathways may directly or indirectly impinge on telomere structure, thus broadening the potential targets available to manipulate telomere function.


Vyšlo v časopise: Rif2 Promotes a Telomere Fold-Back Structure through Rpd3L Recruitment in Budding Yeast. PLoS Genet 8(9): e32767. doi:10.1371/journal.pgen.1002960
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1002960

Souhrn

Using a genome-wide screening approach, we have established the genetic requirements for proper telomere structure in Saccharomyces cerevisiae. We uncovered 112 genes, many of which have not previously been implicated in telomere function, that are required to form a fold-back structure at chromosome ends. Among other biological processes, lysine deacetylation, through the Rpd3L, Rpd3S, and Hda1 complexes, emerged as being a critical regulator of telomere structure. The telomeric-bound protein, Rif2, was also found to promote a telomere fold-back through the recruitment of Rpd3L to telomeres. In the absence of Rpd3 function, telomeres have an increased susceptibility to nucleolytic degradation, telomere loss, and the initiation of premature senescence, suggesting that an Rpd3-mediated structure may have protective functions. Together these data reveal that multiple genetic pathways may directly or indirectly impinge on telomere structure, thus broadening the potential targets available to manipulate telomere function.


Zdroje

1. de LangeT (2009) How telomeres solve the end-protection problem. Science 326: 948–952.

2. PalmW, de LangeT (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301–334.

3. Giraud-PanisMJ, TeixeiraMT, GeliV, GilsonE (2010) CST meets shelterin to keep telomeres in check. Mol Cell 39: 665–676.

4. LydallD, WeinertT (1995) Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270: 1488–1491.

5. GrandinN, DamonC, CharbonneauM (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20: 1173–1183.

6. JiaX, WeinertT, LydallD (2004) Mec1 and Rad53 inhibit formation of single-stranded DNA at telomeres of Saccharomyces cerevisiae cdc13-1 mutants. Genetics 166: 753–764.

7. LydallD (2009) Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 28: 2174–2187.

8. GrandinN, ReedSI, CharbonneauM (1997) Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11: 512–527.

9. BonettiD, ClericiM, AnbalaganS, MartinaM, LucchiniG, et al. (2010) Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genet 6: e1000966 doi:10.1371/journal.pgen.1000966.

10. AnbalaganS, BonettiD, LucchiniG, LongheseMP (2011) Rif1 supports the function of the CST complex in yeast telomere capping. PLoS Genet 7: e1002024 doi: 10.1371/journal.pgen.1002024.

11. LingnerJ, CooperJP, CechTR (1995) Telomerase and DNA end replication: no longer a lagging strand problem? Science 269: 1533–1534.

12. HugN, LingnerJ (2006) Telomere length homeostasis. Chromosoma 115: 413–425.

13. LundbladV, SzostakJW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57: 633–643.

14. GottschlingDE, AparicioOM, BillingtonBL, ZakianVA (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63: 751–762.

15. CockellM, PalladinoF, LarocheT, KyrionG, LiuC, et al. (1995) The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J Cell Biol 129: 909–924.

16. KeoghMC, KurdistaniSK, MorrisSA, AhnSH, PodolnyV, et al. (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593–605.

17. EhrentrautS, WeberJM, DybowskiJN, HoffmannD, Ehrenhofer-MurrayAE (2010) Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. Proc Natl Acad Sci U S A 107: 5522–5527.

18. ZhouJ, ZhouBO, LenzmeierBA, ZhouJQ (2009) Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 37: 3699–3713.

19. RundlettSE, CarmenAA, KobayashiR, BavykinS, TurnerBM, et al. (1996) HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. Proc Natl Acad Sci U S A 93: 14503–14508.

20. GriffithJD, ComeauL, RosenfieldS, StanselRM, BianchiA, et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514.

21. de LangeT (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5: 323–329.

22. CesareAJ, QuinneyN, WillcoxS, SubramanianD, GriffithJD (2003) Telomere looping in P. sativum (common garden pea). Plant J 36: 271–279.

23. Munoz-JordanJL, CrossGA, de LangeT, GriffithJD (2001) t-loops at trypanosome telomeres. EMBO J 20: 579–588.

24. RaicesM, VerdunRE, ComptonSA, HaggblomCI, GriffithJD, et al. (2008) C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell 132: 745–757.

25. StanselRM, de LangeT, GriffithJD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20: 5532–5540.

26. CesareAJ, Groff-VindmanC, ComptonSA, McEachernMJ, GriffithJD (2008) Telomere loops and homologous recombination-dependent telomeric circles in a Kluyveromyces lactis telomere mutant strain. Mol Cell Biol 28: 20–29.

27. TomaskaL, WillcoxS, SlezakovaJ, NosekJ, GriffithJD (2004) Taz1 binding to a fission yeast model telomere: formation of telomeric loops and higher order structures. J Biol Chem 279: 50764–50772.

28. de BruinD, KantrowSM, LiberatoreRA, ZakianVA (2000) Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol Cell Biol 20: 7991–8000.

29. de BruinD, ZamanZ, LiberatoreRA, PtashneM (2001) Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409: 109–113.

30. Strahl-BolsingerS, HechtA, LuoK, GrunsteinM (1997) SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev 11: 83–93.

31. TongAH, EvangelistaM, ParsonsAB, XuH, BaderGD, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368.

32. MaereS, HeymansK, KuiperM (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449.

33. GoudsouzianLK, TuzonCT, ZakianVA (2006) S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Mol Cell 24: 603–610.

34. HarariY, RubinsteinL, KupiecM (2011) An anti-checkpoint activity for rif1. PLoS Genet 7: e1002421 doi:10.1371/journal.pgen.1002421.

35. RibeyreC, ShoreD (2012) Anticheckpoint pathways at telomeres in yeast. Nat Struct Mol Biol 19: 307–313.

36. TaddeiA, Van HouweG, NagaiS, ErbI, van NimwegenE, et al. (2009) The functional importance of telomere clustering: global changes in gene expression result from SIR factor dispersion. Genome Res 19: 611–625.

37. BurgioG, CipressaF, IngrassiaAM, CenciG, CoronaDF (2011) The histone deacetylase Rpd3 regulates the heterochromatin structure of Drosophila telomeres. J Cell Sci 124: 2041–2048.

38. AddinallSG, DowneyM, YuM, ZubkoMK, DewarJ, et al. (2008) A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 180: 2251–2266.

39. AddinallSG, HolsteinEM, LawlessC, YuM, ChapmanK, et al. (2011) Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet 7: e1001362 doi:10.1371/journal.pgen.1001362.

40. ChangM, DittmarJC, RothsteinR (2011) Long telomeres are preferentially extended during recombination-mediated telomere maintenance. Nat Struct Mol Biol 18: 451–456.

41. Hsin-Yu ChangCL, AddinallStephen G, OexleSarah, TaschukMorgan, WipatAnil, WilkinsonDarren J, LydallDavid (2011) Genome-Wide Analysis to Identify Pathways Affecting Telomere-Initiated Senescence in Budding Yeast. G3 3: 197–208.

42. MaicherM, KastnerL, DeesM, LukeB (2012) Telomere transcription casuses replication dependent telomere shortening and promotes cellular senescence. Nucleic Acids Research In Press.

43. AskreeSH, YehudaT, SmolikovS, GurevichR, HawkJ, et al. (2004) A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci U S A 101: 8658–8663.

44. GatbontonT, ImbesiM, NelsonM, AkeyJM, RuderferDM, et al. (2006) Telomere length as a quantitative trait: genome-wide survey and genetic mapping of telomere length-control genes in yeast. PLoS Genet 2: e35 doi:10.1371/journal.pgen.0020035.

45. ThamWH, ZakianVA (2002) Transcriptional silencing at Saccharomyces telomeres: implications for other organisms. Oncogene 21: 512–521.

46. GrunsteinM (1997) Molecular model for telomeric heterochromatin in yeast. Curr Opin Cell Biol 9: 383–387.

47. PrydeFE, LouisEJ (1999) Limitations of silencing at native yeast telomeres. EMBO J 18: 2538–2550.

48. Guthrie C, Fink GR (1991) Guide to Yeast Genetics and Molecular Biology. London: Academic Press. 93 p.

49. XueY, RushtonMD, MaringeleL (2011) A novel checkpoint and RPA inhibitory pathway regulated by Rif1. PLoS Genet 7: e1002417 doi:10.1371/journal.pgen.1002417.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 9
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#