#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Translation in Giant Viruses: A Unique Mixture of Bacterial and Eukaryotic Termination Schemes


Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses.


Vyšlo v časopise: Translation in Giant Viruses: A Unique Mixture of Bacterial and Eukaryotic Termination Schemes. PLoS Genet 8(12): e32767. doi:10.1371/journal.pgen.1003122
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003122

Souhrn

Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses.


Zdroje

1. La ScolaB, AudicS, RobertC, JungangL, de LamballerieX, et al. (2003) A giant virus in amoebae. Science 299: 2033 doi:10.1126/science.1081867.

2. RaoultD, AudicS, RobertC, AbergelC, RenestoP, et al. (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306: 1344–1350 doi:10.1126/science.1101485.

3. LegendreM, SantiniS, RicoA, AbergelC, ClaverieJ-M (2011) Breaking the 1000-gene barrier for Mimivirus using ultra-deep genome and transcriptome sequencing. Virol J 8: 99 doi:10.1186/1743-422X-8-99.

4. Van HamRCHJ, KamerbeekJ, PalaciosC, RausellC, AbascalF, et al. (2003) Reductive Genome Evolution in Buchnera Aphidicola. PNAS 100: 581–586 doi:10.1073/pnas.0235981100.

5. WatersE, HohnMJ, AhelI, GrahamDE, AdamsMD, et al. (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100: 12984–12988 doi:10.1073/pnas.1735403100.

6. LaneCE, van den HeuvelK, KozeraC, CurtisBA, ParsonsBJ, et al. (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104: 19908–19913 doi:10.1073/pnas.0707419104.

7. LegendreM, AudicS, PoirotO, HingampP, SeltzerV, et al. (2010) mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res 20: 664–674 doi:10.1101/gr.102582.109.

8. AbergelC, Rudinger-ThirionJ, GiegéR, ClaverieJ-M (2007) Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol 81: 12406–12417 doi:10.1128/JVI.01107-07.

9. ClaverieJ-M, OgataH (2009) Ten good reasons not to exclude giruses from the evolutionary picture. Nat Rev Microbiol 7: 615 author reply 615. doi:10.1038/nrmicro2108-c3.

10. MoreiraD, López-GarcíaP (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7: 306–311 doi:10.1038/nrmicro2108.

11. BoyerM, MadouiM-A, GimenezG, La ScolaB, RaoultD (2010) Phylogenetic and Phyletic Studies of Informational Genes in Genomes Highlight Existence of a 4th Domain of Life Including Giant Viruses. PLoS ONE 5: e15530 doi:10.1371/journal.pone.0015530.

12. NasirA, KimKM, Caetano-AnollesG (2012) Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya. BMC Evolutionary Biology 12: 156 doi:10.1186/1471-2148-12-156.

13. MoreiraD, Brochier-ArmanetC (2008) Giant viruses, giant chimeras: the multiple evolutionary histories of Mimivirus genes. BMC Evol Biol 8: 12 doi:10.1186/1471-2148-8-12.

14. ClaverieJ-M, AbergelC (2010) Mimivirus: the emerging paradox of quasi-autonomous viruses. Trends in Genetics 26: 431–437 doi:10.1016/j.tig.2010.07.003.

15. ArslanD, LegendreM, SeltzerV, AbergelC, ClaverieJ-M (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA 108: 17486–17491 doi:10.1073/pnas.1110889108.

16. LegendreM, ArslanD, AbergelC, ClaverieJ-M (2012) Genomics of Megavirus and the elusive fourth domain of Life. Communicative & Integrative Biology 5: 102–106.

17. SongH, MugnierP, DasAK, WebbHM, EvansDR, et al. (2000) The crystal structure of human eukaryotic release factor eRF1–mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311–321.

18. LaurbergM, AsaharaH, KorostelevA, ZhuJ, TrakhanovS, et al. (2008) Structural basis for translation termination on the 70S ribosome. Nature 454: 852–857 doi:10.1038/nature07115.

19. BertramG, InnesS, MinellaO, RichardsonJP, StansfieldI (2001) Endless Possibilities: Translation Termination and Stop Codon Recognition. Microbiology 147: 255–269.

20. MargusT, RemmM, TensonT (2007) Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 8: 15 doi:10.1186/1471-2164-8-15.

21. ChengZ, SaitoK, PisarevAV, WadaM, PisarevaVP, et al. (2009) Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev 23: 1106–1118 doi:10.1101/gad.1770109.

22. GaoH, ZhouZ, RawatU, HuangC, BouakazL, et al. (2007) RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors. Cell 129: 929–941 doi:10.1016/j.cell.2007.03.050.

23. NakamuraY, ItoK (2011) tRNA mimicry in translation termination and beyond. Wiley Interdiscip Rev RNA 2: 647–668 doi:10.1002/wrna.81.

24. SaitoK, KobayashiK, WadaM, KikunoI, TakusagawaA, et al. (2010) Omnipotent role of archaeal elongation factor 1 alpha (EF1α in translational elongation and termination, and quality control of protein synthesis. Proc Natl Acad Sci USA 107: 19242–19247 doi:10.1073/pnas.1009599107.

25. NamyO, RoussetJ-P, NapthineS, BrierleyI (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell 13: 157–168.

26. NilssonM, Rydén-AulinM (2003) Glutamine is incorporated at the nonsense codons UAG and UAA in a suppressor-free Escherichia coli strain. Biochim Biophys Acta 1627: 1–6.

27. EggertssonG, SöllD (1988) Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli. Microbiological Reviews 52: 354.

28. CopelandPR (2003) Regulation of gene expression by stop codon recoding: selenocysteine. Gene 312: 17–25.

29. CraigenWJ, CaskeyCT (1986) Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322: 273–275 doi:10.1038/322273a0.

30. BaranovPV, GestelandRF, AtkinsJF (2002) Release factor 2 frameshifting sites in different bacteria. EMBO Rep 3: 373–377 doi:10.1093/embo-reports/kvf065.

31. BetneyR, de SilvaE, KrishnanJ, StansfieldI (2010) Autoregulatory systems controlling translation factor expression: thermostat-like control of translational accuracy. RNA 16: 655–663 doi:10.1261/rna.1796210.

32. BonettiB, FuL, MoonJ, BedwellDM (1995) The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 251: 334–345 doi:10.1006/jmbi.1995.0438.

33. WeissRB (1991) Ribosomal frameshifting, jumping and readthrough. Current Opinion in Cell Biology 3: 1051–1055 doi:10.1016/0955-0674(91)90128-L.

34. PooleES, BrownCM, TateWP (1995) The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J 14: 151–158.

35. TateWP, PooleES, HorsfieldJA, ManneringSA, BrownCM, et al. (1995) Translational termination efficiency in both bacteria and mammals is regulated by the base following the stop codon. Biochem Cell Biol 73: 1095–1103.

36. VallabhaneniH, Fan-MinogueH, BedwellDM, FarabaughPJ (2009) Connection between stop codon reassignment and frequent use of shifty stop frameshifting. RNA 15: 889–897 doi:10.1261/rna.1508109.

37. MatsugiJ, MuraoK, IshikuraH (1998) Effect of B. subtilis TRNA(Trp) on readthrough rate at an opal UGA codon. J Biochem 123: 853–858.

38. BeierH, GrimmM (2001) Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29: 4767–4782.

39. SchmeingTM, VoorheesRM, KelleyAC, RamakrishnanV (2011) How mutations in tRNA distant from the anticodon affect the fidelity of decoding. Nat Struct Mol Biol 18: 432–436 doi:10.1038/nsmb.2003.

40. FrolovaL, Seit-NebiA, KisselevL (2002) Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8: 129–136.

41. KolosovP, FrolovaL, Seit-NebiA, DubovayaV, KononenkoA, et al. (2005) Invariant amino acids essential for decoding function of polypeptide release factor eRF1. Nucleic Acids Res 33: 6418–6425 doi:10.1093/nar/gki927.

42. MerkulovaTI, FrolovaLY, LazarM, CamonisJ, KisselevLL (1999) C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett 443: 41–47.

43. YoungmanEM, McDonaldME, GreenR (2008) Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol 62: 353–373 doi:10.1146/annurev.micro.61.080706.093323.

44. QuangLS, GascuelO, LartillotN (2008) Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24: 2317–2323 doi:10.1093/bioinformatics/btn445.

45. WilliamsTA, EmbleyTM, HeinzE (2011) Informational gene phylogenies do not support a fourth domain of life for nucleocytoplasmic large DNA viruses. PLoS ONE 6: e21080 doi:10.1371/journal.pone.0021080.

46. BoyerM, YutinN, PagnierI, BarrassiL, FournousG, et al. (2009) Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA 106: 21848–21853 doi:10.1073/pnas.0911354106.

47. ThomasV, BertelliC, CollynF, CassonN, TelentiA, et al. (2011) Lausannevirus, a giant amoebal virus encoding histone doublets. Environ Microbiol 13: 1454–1466 doi:10.1111/j.1462-2920.2011.02446.x.

48. Koonin EV, Yutin N (2012) Nucleo-cytoplasmic Large DNA Viruses (NCLDV) of Eukaryotes. eLS. John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0023268.

49. ClaverieJM, AbergelC, OgataH (2009) Mimivirus. Curr Top Microbiol Immunol 328: 89–121.

50. SenjuS, IyamaK-I, KudoH, AizawaS, NishimuraY (2000) Immunocytochemical Analyses and Targeted Gene Disruption of GTPBP1. Mol Cell Biol 20: 6195–6200 doi:10.1128/MCB.20.17.6195-6200.2000.

51. WooK-C, KimT-D, LeeK-H, KimD-Y, KimS, et al. (2011) Modulation of exosome-mediated mRNA turnover by interaction of GTP-binding protein 1 (GTPBP1) with its target mRNAs. FASEB J 25: 2757–2769 doi:10.1096/fj.10-178715.

52. Fan-MinogueH, DuM, PisarevAV, KallmeyerAK, Salas-MarcoJ, et al. (2008) Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 30: 599–609 doi:10.1016/j.molcel.2008.03.020.

53. JaffeDB, ButlerJ, GnerreS, MauceliE, Lindblad-TohK, et al. (2003) Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res 13: 91–96 doi:10.1101/gr.828403.

54. StankeM, SchöffmannO, MorgensternB, WaackS (2006) Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7: 62 doi:10.1186/1471-2105-7-62.

55. SlaterGSC, BirneyE (2005) Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6: 31 doi:10.1186/1471-2105-6-31.

56. LoweTM, EddySR (1997) tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucl Acids Res 25: 0955–0964 doi:10.1093/nar/25.5.0955.

57. MariottiM, GuigóR (2010) Selenoprofiles: Profile-Based Scanning of Eukaryotic Genome Sequences for Selenoprotein Genes. Bioinformatics 26: 2656–2663 doi:10.1093/bioinformatics/btq516.

58. KryukovGV, CastellanoS, NovoselovSV, LobanovAV, ZehtabO, et al. (2003) Characterization of mammalian selenoproteomes. Science 300: 1439–1443 doi:10.1126/science.1083516.

59. KatohK, TohH (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinformatics 9: 286–298 doi:10.1093/bib/bbn013.

60. GuindonS, DufayardJ-F, LefortV, AnisimovaM, HordijkW, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307–321 doi:10.1093/sysbio/syq010.

61. RonquistF, HuelsenbeckJP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

62. LartillotN, LepageT, BlanquartS (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25: 2286–2288 doi:10.1093/bioinformatics/btp368.

63. TrapnellC, PachterL, SalzbergSL (2009) TopHat: Discovering Splice Junctions with RNA-Seq. Bioinformatics 25: 1105–1111 doi:10.1093/bioinformatics/btp120.

64. HomerN, MerrimanB, NelsonSF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS ONE 4: e7767 doi:10.1371/journal.pone.0007767.

65. MortazaviA, WilliamsBA, McCueK, SchaefferL, WoldB (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628 doi:10.1038/nmeth.1226.

66. SuhreK, AudicS, ClaverieJ-M (2005) Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc Natl Acad Sci USA 102: 14689–14693 doi:10.1073/pnas.0506465102.

67. ByrneD, GrzelaR, LartigueA, AudicS, ChenivesseS, et al. (2009) The polyadenylation site of Mimivirus transcripts obeys a stringent “hairpin rule.”. Genome Res 19: 1233–1242 doi:10.1101/gr.091561.109.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#