#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A Framework for the Establishment of a Cnidarian Gene Regulatory Network for “Endomesoderm” Specification: The Inputs of ß-Catenin/TCF Signaling


Understanding the functional relationship between intracellular factors and extracellular signals is required for reconstructing gene regulatory networks (GRN) involved in complex biological processes. One of the best-studied bilaterian GRNs describes endomesoderm specification and predicts that both mesoderm and endoderm arose from a common GRN early in animal evolution. Compelling molecular, genomic, developmental, and evolutionary evidence supports the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian ancestor is derived from the same evolutionary precursor of both endodermal and mesodermal germ layers in all other triploblastic bilaterian animals. We have begun to establish the framework of a provisional cnidarian “endomesodermal” gene regulatory network in the sea anemone, Nematostella vectensis, by using a genome-wide microarray analysis on embryos in which the canonical Wnt/ß-catenin pathway was ectopically targeted for activation by two distinct pharmaceutical agents (lithium chloride and 1-azakenpaullone) to identify potential targets of endomesoderm specification. We characterized 51 endomesodermally expressed transcription factors and signaling molecule genes (including 18 newly identified) with fine-scale temporal (qPCR) and spatial (in situ) analysis to define distinct co-expression domains within the animal plate of the embryo and clustered genes based on their earliest zygotic expression. Finally, we determined the input of the canonical Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt signaling is required to pattern both the future endomesodermal and ectodermal domains prior to gastrulation, and that both BMP and FGF (but not Notch) pathways play important roles in germ layer specification in this animal. We show both evolutionary conserved as well as profound differences in endomesodermal GRN structure compared to bilaterians that may provide fundamental insight into how GRN subcircuits have been adopted, rewired, or co-opted in various animal lineages that give rise to specialized endomesodermal cell types.


Vyšlo v časopise: A Framework for the Establishment of a Cnidarian Gene Regulatory Network for “Endomesoderm” Specification: The Inputs of ß-Catenin/TCF Signaling. PLoS Genet 8(12): e32767. doi:10.1371/journal.pgen.1003164
Kategorie: Research Article
prolekare.web.journal.doi_sk: https://doi.org/10.1371/journal.pgen.1003164

Souhrn

Understanding the functional relationship between intracellular factors and extracellular signals is required for reconstructing gene regulatory networks (GRN) involved in complex biological processes. One of the best-studied bilaterian GRNs describes endomesoderm specification and predicts that both mesoderm and endoderm arose from a common GRN early in animal evolution. Compelling molecular, genomic, developmental, and evolutionary evidence supports the hypothesis that the bifunctional gastrodermis of the cnidarian-bilaterian ancestor is derived from the same evolutionary precursor of both endodermal and mesodermal germ layers in all other triploblastic bilaterian animals. We have begun to establish the framework of a provisional cnidarian “endomesodermal” gene regulatory network in the sea anemone, Nematostella vectensis, by using a genome-wide microarray analysis on embryos in which the canonical Wnt/ß-catenin pathway was ectopically targeted for activation by two distinct pharmaceutical agents (lithium chloride and 1-azakenpaullone) to identify potential targets of endomesoderm specification. We characterized 51 endomesodermally expressed transcription factors and signaling molecule genes (including 18 newly identified) with fine-scale temporal (qPCR) and spatial (in situ) analysis to define distinct co-expression domains within the animal plate of the embryo and clustered genes based on their earliest zygotic expression. Finally, we determined the input of the canonical Wnt/ß-catenin pathway into the cnidarian endomesodermal GRN using morpholino and mRNA overexpression experiments to show that NvTcf/canonical Wnt signaling is required to pattern both the future endomesodermal and ectodermal domains prior to gastrulation, and that both BMP and FGF (but not Notch) pathways play important roles in germ layer specification in this animal. We show both evolutionary conserved as well as profound differences in endomesodermal GRN structure compared to bilaterians that may provide fundamental insight into how GRN subcircuits have been adopted, rewired, or co-opted in various animal lineages that give rise to specialized endomesodermal cell types.


Zdroje

1. CameronRA, DavidsonEH (1991) Cell type specification during sea urchin development. Trends Genet 7: 212–218.

2. KimelmanD, GriffinKJ (2000) Vertebrate mesendoderm induction and patterning. Curr Opin Genet Dev 10: 350–356.

3. RodawayA, PatientR (2001) Mesendoderm. an ancient germ layer? Cell 105: 169–172.

4. BolouriH, DavidsonEH (2002) Modeling DNA sequence-based cis-regulatory gene networks. Dev Biol 246: 2–13.

5. BolouriH, DavidsonEH (2003) Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc Natl Acad Sci U S A 100: 9371–9376.

6. DavidsonEH, RastJP, OliveriP, RansickA, CalestaniC, et al. (2002) A genomic regulatory network for development. Science 295: 1669–1678.

7. DavidsonEH, RastJP, OliveriP, RansickA, CalestaniC, et al. (2002) A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Dev Biol 246: 162–190.

8. OliveriP, CarrickDM, DavidsonEH (2002) A regulatory gene network that directs micromere specification in the sea urchin embryo. Dev Biol 246: 209–228.

9. OliveriP, DavidsonEH (2004) Gene regulatory network controlling embryonic specification in the sea urchin. Curr Opin Genet Dev 14: 351–360.

10. SmithJ, DavidsonEH (2008) Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc Natl Acad Sci U S A 105: 20089–20094.

11. SmithJ, TheodorisC, DavidsonEH (2007) A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318: 794–797.

12. Ben-Tabou de-LeonS, DavidsonEH (2007) Gene regulation: gene control network in development. Annu Rev Biophys Biomol Struct 36: 191.

13. MaduroMF (2006) Endomesoderm specification in Caenorhabditis elegans and other nematodes. Bioessays 28: 1010–1022.

14. OliveriP, DavidsonEH (2004) Gene regulatory network analysis in sea urchin embryos. Methods Cell Biol 74: 775–794.

15. CroceJ, RangeR, WuSY, MirandaE, LhomondG, et al. (2011) Wnt6 activates endoderm in the sea urchin gene regulatory network. Development 138: 3297–3306.

16. CroceJC, McClayDR (2010) Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development 137: 83–91.

17. HinmanVF, NguyenA, DavidsonEH (2007) Caught in the evolutionary act: precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. Dev Biol 312: 584–595.

18. HinmanVF, NguyenAT, CameronRA, DavidsonEH (2003) Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proc Natl Acad Sci U S A 100: 13356–13361.

19. LooseM, PatientR (2004) A genetic regulatory network for Xenopus mesendoderm formation. Dev Biol 271: 467–478.

20. HinmanVF, DavidsonEH (2007) Evolutionary plasticity of developmental gene regulatory network architecture. Proc Natl Acad Sci U S A 104: 19404–19409.

21. IpYT, MaggertK, LevineM (1994) Uncoupling gastrulation and mesoderm differentiation in the Drosophila embryo. EMBO J 13: 5826–5834.

22. AbelT, MichelsonAM, ManiatisT (1993) A Drosophila GATA family member that binds to Adh regulatory sequences is expressed in the developing fat body. Development 119: 623–633.

23. LevineM, DavidsonEH (2005) Gene regulatory networks for development. Proc Natl Acad Sci U S A 102: 4936–4942.

24. StainierDY (2002) A glimpse into the molecular entrails of endoderm formation. Genes Dev 16: 893–907.

25. MartindaleMQ, FinnertyJR, HenryJQ (2002) The Radiata and the evolutionary origins of the bilaterian body plan. Mol Phylogenet Evol 24: 358–365.

26. MartindaleMQ, PangK, FinnertyJR (2004) Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 131: 2463–2474.

27. TechnauU (2001) Brachyury, the blastopore and the evolution of the mesoderm. Bioessays 23: 788–794.

28. TechnauU, ScholzCB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47: 531–539.

29. MartindaleMQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6: 917–927.

30. MaxmenA, BrowneWE, MartindaleMQ, GiribetG (2005) Neuroanatomy of sea spiders implies an appendicular origin of the protocerebral segment. Nature 437: 1144–1148.

31. BurtonPM (2008) Insights from diploblasts; the evolution of mesoderm and muscle. J Exp Zool B Mol Dev Evol 310: 5–14.

32. GenikhovichG, TechnauU Complex functions of Mef2 splice variants in the differentiation of endoderm and of a neuronal cell type in a sea anemone. Development 138: 4911–4919.

33. TechnauU, SteeleRE Evolutionary crossroads in developmental biology: Cnidaria. Development 138: 1447–1458.

34. SeipelK, SchmidV (2006) Mesodermal anatomies in cnidarian polyps and medusae. Int J Dev Biol 50: 589–599.

35. SteinmetzPR, KrausJE, LarrouxC, HammelJU, Amon-HassenzahlA, et al. (2012) Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487: 231–234.

36. ByrumCA, MartindaleQM (2003) Gastrulation in the Cnidara and Ctenophora. Gastrulation, From Cells to Embryo CSHL Press 33–50.

37. Hyman LH, editor (1940) The invertebrates: Protozoa through Ctenophora. New York: McGraw-Hill.

38. Fautin DG, Mariscal R.N. (1991) Cnidaria: Anthozoa. New York: Wiley-Liss.

39. FritzenwankerJH, SainaM, TechnauU (2004) Analysis of forkhead and snail expression reveals epithelial-mesenchymal transitions during embryonic and larval development of Nematostella vectensis. Dev Biol 275: 389–402.

40. MazzaME, PangK, MartindaleMQ, FinnertyJR (2007) Genomic organization, gene structure, and developmental expression of three clustered otx genes in the sea anemone Nematostella vectensis. J Exp Zoolog B Mol Dev Evol 308: 494–506.

41. HandC, UhlingerKR (1992) The Culture, Sexual and Asexual Reproduction, and Growth of the Sea Anemone Nematostella vectensis. Biol Bull 182: 169–176.

42. MagieCR, PangK, MartindaleMQ (2005) Genomic inventory and expression of Sox and Fox genes in the cnidarian Nematostella vectensis. Dev Genes Evol 215: 618–630.

43. DarlingJA, ReitzelAR, BurtonPM, MazzaME, RyanJF, et al. (2005) Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 27: 211–221.

44. BallEE, HaywardDC, SaintR, MillerDJ (2004) A simple plan–cnidarians and the origins of developmental mechanisms. Nat Rev Genet 5: 567–577.

45. TechnauU, SteeleRE (2011) Evolutionary crossroads in developmental biology: Cnidaria. Development 138: 1447–1458.

46. RenferE, Amon-HassenzahlA, SteinmetzPR, TechnauU (2010) A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. Proc Natl Acad Sci U S A 107: 104–108.

47. PutnamNH, SrivastavaM, HellstenU, DirksB, ChapmanJ, et al. (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317: 86–94.

48. MagieCR, DalyM, MartindaleMQ (2007) Gastrulation in the cnidarian Nematostella vectensis occurs via invagination not ingression. Dev Biol 305: 483–497.

49. FritzenwankerJH, GenikhovichG, KrausY, TechnauU (2007) Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 310: 264–279.

50. LeePN, KumburegamaS, MarlowHQ, MartindaleMQ, WikramanayakeAH (2007) Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 310: 169–186.

51. SchohlA, FagottoF (2003) A role for maternal beta-catenin in early mesoderm induction in Xenopus. EMBO J 22: 3303–3313.

52. ImaiK, TakadaN, SatohN, SatouY (2000) (beta)-catenin mediates the specification of endoderm cells in ascidian embryos. Development 127: 3009–3020.

53. HuelskenJ, BirchmeierW (2001) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11: 547–553.

54. HuelskenJ, VogelR, BrinkmannV, ErdmannB, BirchmeierC, et al. (2000) Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol 148: 567–578.

55. Emily-FenouilF, GhiglioneC, LhomondG, LepageT, GacheC (1998) GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo. Development 125: 2489–2498.

56. LeePN, PangK, MatusDQ, MartindaleMQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol 17: 157–167.

57. CroceJC, McClayDR (2006) The canonical Wnt pathway in embryonic axis polarity. Semin Cell Dev Biol 17: 168–174.

58. WikramanayakeAH, HuangL, KleinWH (1998) beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proc Natl Acad Sci U S A 95: 9343–9348.

59. WikramanayakeAH, HongM, LeePN, PangK, ByrumCA, et al. (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426: 446–450.

60. RentzschF, FritzenwankerJH, ScholzCB, TechnauU (2008) FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development 135: 1761–1769.

61. MatusDQ, ThomsenGH, MartindaleMQ (2007) FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarian. Dev Genes Evol 217: 137–148.

62. MeijerL, FlajoletM, GreengardP (2004) Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25: 471–480.

63. VandenbergLN, LevinM Consistent left-right asymmetry cannot be established by late organizers in Xenopus unless the late organizer is a conjoined twin. Development 137: 1095–1105.

64. CameronRA, DavidsonEH (1997) LiCl perturbs ectodermal veg1 lineage allocations in Strongylocentrotus purpuratus embryos. Dev Biol 187: 236–239.

65. van NoortM, MeeldijkJ, van der ZeeR, DestreeO, CleversH (2002) Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem 277: 17901–17905.

66. RentzschF, HobmayerB, HolsteinTW (2005) Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis. Dev Biol 278: 1–12.

67. AdellT, MarsalM, SaloE (2008) Planarian GSK3s are involved in neural regeneration. Dev Genes Evol 218: 89–103.

68. NakamuraT, SanoM, SongyangZ, SchneiderMD (2003) A Wnt- and beta -catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 100: 5834–5839.

69. TakaderaT, YoshikawaR, OhyashikiT (2006) Thapsigargin-induced apoptosis was prevented by glycogen synthase kinase-3 inhibitors in PC12 cells. Neurosci Lett 408: 124–128.

70. GouldTD, ZarateCA, ManjiHK (2004) Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry 65: 10–21.

71. YostC, TorresM, MillerJR, HuangE, KimelmanD, et al. (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10: 1443–1454.

72. TrevinoM, StefanikDJ, RodriguezR, HarmonS, BurtonPM (2011) Induction of canonical Wnt signaling by alsterpaullone is sufficient for oral tissue fate during regeneration and embryogenesis in Nematostella vectensis. Dev Dyn 240: 2673–2679.

73. WindsorPJ, LeysSP Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evol Dev 12: 484–493.

74. DarrasS, GerhartJ, TerasakiM, KirschnerM, LoweCJ beta-catenin specifies the endomesoderm and defines the posterior organizer of the hemichordate Saccoglossus kowalevskii. Development 138: 959–970.

75. BainJ, McLauchlanH, ElliottM, CohenP (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371: 199–204.

76. MaduroMF, LinR, RothmanJH (2002) Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression. Dev Biol 248: 128–142.

77. BharathanG, JanssenBJ, KelloggEA, SinhaN (1997) Did homeodomain proteins duplicate before the origin of angiosperms, fungi, and metazoa? Proc Natl Acad Sci U S A 94: 13749–13753.

78. GazaveE, LapebieP, RichardsGS, BrunetF, EreskovskyAV, et al. (2009) Origin and evolution of the Notch signalling pathway: an overview from eukaryotic genomes. BMC Evol Biol 9: 249.

79. MarlowH, RöttingerE, BoekhoutM, MartindaleMQ (2012) Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 362: 295–308.

80. KusserowA, PangK, SturmC, HroudaM, LentferJ, et al. (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433: 156–160.

81. MatusDQ, ThomsenGH, MartindaleMQ (2006) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16: 499–505.

82. MatusDQ, MagieCR, PangK, MartindaleMQ, ThomsenGH (2008) The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution. Dev Biol 313: 501–518.

83. Hemmati-BrivanlouA, KellyOG, MeltonDA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295.

84. HacohenN, KramerS, SutherlandD, HiromiY, KrasnowMA (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92: 253–263.

85. SakanakaC, WeissJB, WilliamsLT (1998) Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proc Natl Acad Sci U S A 95: 3020–3023.

86. ManoukianAS, YoffeKB, WilderEL, PerrimonN (1995) The porcupine gene is required for wingless autoregulation in Drosophila. Development 121: 4037–4044.

87. IshikawaA, KitajimaS, TakahashiY, KokuboH, KannoJ, et al. (2004) Mouse Nkd1, a Wnt antagonist, exhibits oscillatory gene expression in the PSM under the control of Notch signaling. Mech Dev 121: 1443–1453.

88. ScholzCB, TechnauU (2003) The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa). Dev Genes Evol 212: 563–570.

89. NiehrsC, PolletN (1999) Synexpression groups in eukaryotes. Nature 402: 483–487.

90. MarlowHQ, SrivastavaM, MatusDQ, RokhsarD, MartindaleMQ (2009) Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 69: 235–254.

91. RyanJF, MazzaME, PangK, MatusDQ, BaxevanisAD, et al. (2007) Pre-bilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS ONE 2: e153 doi:10.1371/journal.pone.0000153..

92. KumburegamaS, WijesenaN, XuR, WikramanayakeAH (2011) Strabismus-mediated primary archenteron invagination is uncoupled from Wnt/beta-catenin-dependent endoderm cell fate specification in Nematostella vectensis (Anthozoa, Cnidaria): Implications for the evolution of gastrulation. Evodevo 2: 2.

93. MagieCR, MartindaleMQ (2008) Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol Bull 214: 218–232.

94. LaydenMJ, BoekhoutM, MartindaleMQ Nematostella vectensis achaete-scute homolog NvashA regulates embryonic ectodermal neurogenesis and represents an ancient component of the metazoan neural specification pathway. Development 139: 1013–1022.

95. YasuokaY, KobayashiM, KurokawaD, AkasakaK, SaigaH, et al. (2009) Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3. Development 136: 2005–2014.

96. MatusDQ, PangK, MarlowH, DunnCW, ThomsenGH, et al. (2006) Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 103: 11195–11200.

97. ExtavourCG, PangK, MatusDQ, MartindaleMQ (2005) vasa and nanos expression patterns in a sea anemone and the evolution of bilaterian germ cell specification mechanisms. Evol Dev 7: 201–215.

98. FinnertyJR, PangK, BurtonP, PaulsonD, MartindaleMQ (2004) Origins of bilateral symmetry: Hox and dpp expression in a sea anemone. Science 304: 1335–1337.

99. RentzschF, AntonR, SainaM, HammerschmidtM, HolsteinTW, et al. (2006) Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 296: 375–387.

100. SrivastavaM, LarrouxC, LuDR, MohantyK, ChapmanJ, et al. (2010) Early evolution of the LIM homeobox gene family. BMC Biol 8: 4.

101. BienzM (1998) TCF: transcriptional activator or repressor? Curr Opin Cell Biol 10: 366–372.

102. MolenaarM, van de WeteringM, OosterwegelM, Peterson-MaduroJ, GodsaveS, et al. (1996) XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86: 391–399.

103. Kumburegama NS (2010) Evolution of germ layers: Insight from Wnt signaling in a cnidarian, Nematostella vectensis. Honolulu: University of Hawai'i at Manoa.

104. DavidsonEH (2009) Network design principles from the sea urchin embryo. Curr Opin Genet Dev 19: 535–540.

105. KleinPS, MeltonDA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93: 8455–8459.

106. StambolicV, RuelL, WoodgettJR (1996) Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6: 1664–1668.

107. BelleiB, FloriE, IzzoE, MarescaV, PicardoM (2008) GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell Signal 20: 1750–1761.

108. SinevaGS, PospelovVA (2010) Inhibition of GSK3beta enhances both adhesive and signalling activities of beta-catenin in mouse embryonic stem cells. Biol Cell 102: 549–560.

109. RunnstroemJ (1928) Zur experimentallen Analyse der Wir- kung des lithiums auf den Seeigelkeim. Acta Zoologica 9: 365–424.

110. TeoR, MohrlenF, PlickertG, MullerWA, FrankU (2006) An evolutionary conserved role of Wnt signaling in stem cell fate decision. Dev Biol 289: 91–99.

111. SikesJM, BelyAE (2010) Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. Dev Biol 338: 86–97.

112. KaneDA, KimmelCB (1993) The zebrafish midblastula transition. Development 119: 447–456.

113. NewportJ, KirschnerM (1982) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30: 687–696.

114. NewportJ, KirschnerM (1982) A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30: 675–686.

115. EdgarBA, KiehleCP, SchubigerG (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44: 365–372.

116. MasuiY, WangP (1998) Cell cycle transition in early embryonic development of Xenopus laevis. Biol Cell 90: 537–548.

117. MeehanRR, DunicanDS, RuzovA, PenningsS (2005) Epigenetic silencing in embryogenesis. Exp Cell Res 309: 241–249.

118. SibonOC, StevensonVA, TheurkaufWE (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388: 93–97.

119. KrausY, FritzenwankerJH, GenikhovichG, TechnauU (2007) The blastoporal organiser of a sea anemone. Curr Biol 17: R874–876.

120. PeterIS, DavidsonEH (2011) A gene regulatory network controlling the embryonic specification of endoderm. Nature 474: 635–639.

121. MomoseT, DerelleR, HoulistonE (2008) A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135: 2105–2113.

122. MomoseT, HoulistonE (2007) Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 5: e70 doi:10.1371/journal.pbio.0050070..

123. MaduroMF (2009) Structure and evolution of the C. elegans embryonic endomesoderm network. Biochim Biophys Acta 1789: 250–260.

124. MartindaleMQ, HejnolA (2009) A developmental perspective: changes in the position of the blastopore during bilaterian evolution. Dev Cell 17: 162–174.

125. VonicaA, WengW, GumbinerBM, VenutiJM (2000) TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis. Dev Biol 217: 230–243.

126. LoganCY, MillerJR, FerkowiczMJ, McClayDR (1999) Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126: 345–357.

127. Fernandez-SerraM, ConsalesC, LivigniA, ArnoneMI (2004) Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev Biol 268: 384–402.

128. DuloquinL, LhomondG, GacheC (2007) Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134: 2293–2302.

129. RottingerE, BesnardeauL, LepageT (2004) A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 131: 1075–1087.

130. RottingerE, SaudemontA, DubocV, BesnardeauL, McClayD, et al. (2008) FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development. Development 135: 353–365.

131. AngererLM, OleksynDW, LoganCY, McClayDR, DaleL, et al. (2000) A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis. Development 127: 1105–1114.

132. DubocV, LaprazF, SaudemontA, BessodesN, MekpohF, et al. (2010) Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo. Development 137: 223–235.

133. DubocV, RottingerE, BesnardeauL, LepageT (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6: 397–410.

134. LaprazF, BesnardeauL, LepageT (2009) Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7: e1000248 doi:10.1371/journal.pbio.1000248..

135. SainaM, GenikhovichG, RenferE, TechnauU (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 106: 18592–18597.

136. McClayDR, PetersonRE, RangeRC, Winter-VannAM, FerkowiczMJ (2000) A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo. Development 127: 5113–5122.

137. SherwoodDR, McClayDR (2001) LvNotch signaling plays a dual role in regulating the position of the ectoderm-endoderm boundary in the sea urchin embryo. Development 128: 2221–2232.

138. SherwoodDR, McClayDR (1999) LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 126: 1703–1713.

139. RottingerE, CroceJ, LhomondG, BesnardeauL, GacheC, et al. (2006) Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development 133: 4341–4353.

140. SweetHC, GehringM, EttensohnCA (2002) LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties. Development 129: 1945–1955.

141. SweetHC, HodorPG, EttensohnCA (1999) The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 126: 5255–5265.

142. SethiAJ, WikramanayakeRM, AngererRC, RangeRC, AngererLM (2012) Sequential signaling crosstalk regulates endomesoderm segregation in sea urchin embryos. Science 335: 590–593.

143. FritzenwankerJH, TechnauU (2002) Induction of gametogenesis in the basal cnidarian Nematostella vectensis(Anthozoa). Dev Genes Evol 212: 99–103.

144. BolstadBM, IrizarryRA, AstrandM, SpeedTP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

145. IrizarryRA, HobbsB, CollinF, Beazer-BarclayYD, AntonellisKJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264.

146. AltschulSF, GishW, MillerW, MyersEW, LipmanDJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.

147. RoureA, RothbacherU, RobinF, KalmarE, FeroneG, et al. (2007) A multicassette Gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS ONE 2: e916 doi:10.1371/journal.pone.0000916..

148. FinnertyJR, PaulsonD, BurtonP, PangK, MartindaleMQ (2003) Early evolution of a homeobox gene: the parahox gene Gsx in the Cnidaria and the Bilateria. Evol Dev 5: 331–345.

149. OrmestadM, MartindaleMQ, RottingerE (2011) A comparative gene expression database for invertebrates. Evodevo 2: 17.

Štítky
Genetika Reprodukčná medicína

Článok vyšiel v časopise

PLOS Genetics


2012 Číslo 12
Najčítanejšie tento týždeň
Najčítanejšie v tomto čísle
Kurzy

Zvýšte si kvalifikáciu online z pohodlia domova

Získaná hemofilie - Povědomí o nemoci a její diagnostika
nový kurz

Eozinofilní granulomatóza s polyangiitidou
Autori: doc. MUDr. Martina Doubková, Ph.D.

Všetky kurzy
Prihlásenie
Zabudnuté heslo

Zadajte e-mailovú adresu, s ktorou ste vytvárali účet. Budú Vám na ňu zasielané informácie k nastaveniu nového hesla.

Prihlásenie

Nemáte účet?  Registrujte sa

#ADS_BOTTOM_SCRIPTS#